Feeding and diel vertical migration cycles of Metridia gerlachei (Giesbrecht) in coastal waters of the Antarctic Peninsula
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Diel vertical migration and feeding cycles of adult female Metridia gerlachei in the upper 290 m of a 335-m water column were measured during a total of 65 h in two periods of early summer (Dec 20–21 and Dec 25–26, 1991). Samples collected in eight depth strata by 35 MOCNESS tows (333-μm mesh) were analyzed for abundance and mean individual gut pigment content. Most of the copepod population was concentrated in a 50-m depth interval at all times. Feeding began simultaneously with nocturnal ascent from a depth of 200–250 m at ≈ 18:00 h (local time), when the relative change in ambient light intensity was greatest. Ingestion rate increased exponentially (ki = 0.988 h−1) at double the gut evacuation rate (ke = 0.488 h−1) as the population moved upward at 22.3–26.5 m h−1 through increasing concentrations of particulate chlorophyll-a. Although the bulk of the population did not move to depths shallower than 50 m, and began its downward migration at a rate of 20.8–31.7 mh−1 in complete darkness, individual females continued to make brief excursions into chlorophyll-rich surface waters (4–8 μg l−1) during the first few hours of population descent. Ingestion rate diminished abruptly by one order of magnitude (ki = 0.068 h−1) at dawn (≈ 03∶30 h). Within four more hours, the population had reached its daytime depth and gut pigment content remained constant at a minimum value until the next migration cycle. No feeding appeared to take place at depth during the day. Ingestion by M. gerlachei females removed < 4% of daily primary production, with only ≈ 20% of this amount being removed from surface waters by active vertical transport.
Description
Keywords
AGROVOC Keywords
Taxonomic Terms
Geographic Names
LC Subjects
Citation
Lopez, M. D. G., & Huntley, M. E. (1995). Feeding and diel vertical migration cycles of Metridia gerlachei (Giesbrecht) in coastal waters of the Antarctic Peninsula. Polar Biology, 15(1), 21–30. https://doi.org/10.1007/BF00236120