Challenge 10: Change humanity’s relationship with the ocean
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/27
Ocean Decade
Challenge 10:
Change humanity’s relationship with the ocean
Meaningful society-ocean connections are strengthened, driving increased motivation, capability and opportunity for people, across all sectors of society, to make decisions, act and behave in ways that ensure a healthy ocean.
Browse
2 results
Search Results
- Limited progress in improving gender and geographic representation in coral reef scienceAhmadia, Gabby N.; Cheng, Samantha H.; Andradi-Brown, Dominic A.; Baez, Stacy K.; Barnes, Megan D.; Bennett, Nathan J.; Campbell, Stuart J.; Darling, Emily S.; Gill, David; Gress, Erika; Gurney, Georgina G.; Horigue, Vera; Jakub, Raymond; Kennedy, Emma V.; Mahajan, Shauna L.; Mangubhai, Sangeeta; Matsuda, Shayle B.; Muthiga, Nyawira A.; Navarro, Michael O.; Santodomingo, Nadia; Vallès, Henri; Veverka, Laura; Villagomez, Angelo; Wenger, Amelia S.; Wosu, Adaoma (Frontiers Media SA, 2021-09-29)Despite increasing recognition of the need for more diverse and equitable representation in the sciences, it is unclear whether measurable progress has been made. Here, we examine trends in authorship in coral reef science from 1,677 articles published over the past 16 years (2003–2018) and find that while representation of authors that are women (from 18 to 33%) and from non-OECD nations (from 4 to 13%) have increased over time, progress is slow in achieving more equitable representation. For example, at the current rate, it would take over two decades for female representation to reach 50%. Given that there are more coral reef non-OECD countries, at the current rate, truly equitable representation of non-OECD countries would take even longer. OECD nations also continue to dominate authorship contributions in coral reef science (89%), in research conducted in both OECD (63%) and non-OECD nations (68%). We identify systemic issues that remain prevalent in coral reef science (i.e., parachute science, gender bias) that likely contribute to observed trends. We provide recommendations to address systemic biases in research to foster a more inclusive global science community. Adoption of these recommendations will lead to more creative, innovative, and impactful scientific approaches urgently needed for coral reefs and contribute to environmental justice efforts.We acknowledge the contributions of the many unrecognized and undervalued individuals in coral reef research whose efforts have made it possible for the field to progress. These scientists have collected data, translated across languages, coordinated field work, welcomed foreign visitors to their countries, shared ideas, trained and mentored students, become friends, inspired, and built the foundation for the discipline we know today. We acknowledge the work of all coral reef scientists who continue day after day to pursue equity, inclusion, and justice in the field and for their colleagues and themselves.
- Shallow structures, interactions, and recurrent vertical motions of active faults in Lingayen Gulf, PhilippinesFlores, Paul Caesar M.; Siringan, Fernando P.; Mateo, Zenon Richard P.; Marfito, Bryan J.; Sarmiento, Keanu Jershon S.; Abigania, Maria Isabel T.; Daag, Arturo S.; Maac-Aguilar, Yolanda (Elsevier, 2023-06-01)The surface trace of the East Zambales Fault (EZF) and its associated faults in the Lingayen Gulf have been previously mapped but no other characteristics were reported. This study utilized seismic reflection, multi-beam bathymetry, and side scan sonar to characterize the offshore EZF in terms of magnitudes of vertical displacement. Sequence stratigraphy and radiocarbon dates provided age constraints on the recurrence interval within the Holocene. The EZF extends for ∼ 57 km into the gulf, follows a north-northwest trend, and bounds the karstic terrane (west) and fluvio-deltaic deposits (east). Sinistral motion is indicated by: 1) normal and reverse drag geometries, 2) reversal in the sense of throw with depth, 3) flower structure, and 4) right-stepping and the uplift of a pressure ridge named Pudoc Bathymetric High. The Central Lingayen Gulf Fault (CLGF), to the east of EZF, follows the same trend. The Lingayen Gulf Transverse Fault (LGTF), oriented east–west, forms a flower structure with the CLGF. The EZF, CLGF, and LGTF combined form the Lingayen Gulf Fault System, which divides the gulf into five fault blocks where uplift and subsidence locally occurred. A paleo-delta at −60 m yielded an age of 6.8 kyBP, indicating it was formed during the first Holocene highstand. With natural compaction considered, fault-associated subsidence of 46–53 m may have occurred. The average Holocene vertical displacement is 2.1–2.2 m, which translates to a recurrence interval of 320–270 years for the fault system. The faults can likely generate earthquakes with magnitudes 7.5 (EZF), 6.7 (CLGF), and 6.6 (LGTF).This work was supported by grants to F. P. Siringan by the Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology Research and Development through the Mapping of Active Offshore Faults for Resilient Coasts Project; and the Department of Environment and Natural Resources – Biodiversity Management Bureau through the Coral Reef Visualization and Assessment - Deep Coral Mapping Project. We are thankful to Deo Carlo Llamas for the meaningful discussions about the current knowledge of the East Zambales Fault. We also thank the anonymous reviewers who provided significant insights for the improvement of this manuscript.