Journal Articles
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
4 results
Search Results
- Impacts of aquaculture nutrient sources: ammonium uptake of commercially important eucheumatoids depends on phosphate levelsNarvarte, Bienson Ceasar V.; Hinaloc, Lourie Ann R.; Gonzaga, Shienna Mae C.; Roleda, Michael Y. (Springer, 2023-09-14)In an integrated multitrophic aquaculture (IMTA) system, seaweeds serve as extractive species that utilize excess nutrients, thereby reducing the risk of eutrophication and promoting sustainable aquaculture. However, the use of excessive fish feeds and the resultant faecal waste as nutrient streams can contribute to variations in nitrogen and phosphorus levels (e.g., primarily NH4+ and PO4−3) in the surrounding area and this may impact the physiology of the integrated seaweeds, particularly on how these species take up inorganic nutrients. In this study, the effect of different PO4−3 levels on NH4+ uptake of the three commercially important eucheumatoids Kappaphycus alvarezii, Kappaphycus striatus and Eucheuma denticulatum was examined under laboratory conditions. Seaweed thalli (n = 4) were incubated in seawater media containing 30 µM NH4+, and 0, 0.5, 1.0, 1.5, 3.0 or 5.0 µM PO4−3 for 1 h under a saturating light level of 116 ± 7.13 µmol photons m−2 s−1 inside a temperature-controlled laboratory. Species-specific responses to PO4−3 levels were observed. For K. alvarezii, maximum NH4+ uptake (17.8 ± 1.6 µmol gDW−1 h−1) was observed at 0.5 µM PO4−3 and the uptake rate declined at higher PO4−3 levels. For K. striatus, NH4+ uptake increased with increasing PO4−3 levels, with maximum N uptake (6.35 ± 0.9 µmol gDW−1 h−1) observed at 5.0 µM PO4−3. For E. denticulatum, maximum NH4+ uptake (14.6 ± 1.4 µmol gDW−1 h−1) was observed at 1.0 µM PO4−3. Our results suggest that among the three eucheumatoid species, the NH4+ uptake of K. striatus persists even at high levels of PO4−3. However, our results also showed that K. striatus had the lowest range of NH4+ uptake rates. These results should be taken into consideration when incorporating eucheumatoids in the IMTA system, where PO4−3levels significantly vary in space and time.
- Ensuring aquatic food security in the PhilippinesCabral, Reniel; Geronimo, Rollan; Mamauag, Antonio Samuel; Silva, Juan; Mancao, Roquelito; Atrigenio, Michael (National Fisheries Research and Development Institute, 2023-12)The human population of the Philippines is expected to reach 158 million by the year 2050, or an increase of 37% relative to 2022. This implies increased demand for aquatic food (or “fish” hereafter). This begs the question of whether the Philippines can meet the expected increase in fish demand. We estimate that even if the Philippines can maintain its current fish production, the Philippines will still require 1.67 million metric tons more fish per year by 2050 to at least maintain its current per capita fish consumption of 34.27 kg per year. Continued mismanagement of inland and marine fisheries will further widen the gap in fish supply. However, we argue that simultaneously rebuilding overfished fisheries, restoring degraded habitats crucial to supporting productive fisheries, addressing current threats to fisheries sustainability, and expanding sustainable marine aquaculture (or mariculture) have the potential to meet future fish demand in the Philippines. Sustainably expanding mariculture requires careful siting and management of mariculture development areas so that mariculture can improve food security without disenfranchising and marginalizing local coastal communities.
- Feeding and reproductive phenotypic traits of the sea urchin Tripneustes gratilla in seagrass beds impacted by eutrophicationBangi, Helen Grace P.; Juinio-Meñez, Marie Antonette (MDPI AG, 2023-07-11)The sea urchin Tripneustes gratilla is a major grazer and is, hence, an excellent key model organism to study to gain a better understanding of responses to changes in its habitat. We investigated whether there are significant variations in the feeding and reproductive phenotypic traits of populations from three seagrass bed sites, with respect to their proximity to fish farms in Bolinao, northwestern Philippines. We established three stations in each of the three sites: the far, the intermediate, and those near the fish farms, and compared the sea urchins’ phenotypic traits and determined whether these were related to seagrass productivity and water parameters. Regardless of the sampling period, adult sea urchins (66.92 ± 0.27 mm test diameter, TD, n = 157) from the areas intermediate and near to the fish farms had significantly lower indices of Aristotle’s lantern, gut contents, gut and gonads, and lower gonad quality (high percentage of unusual black gonads), compared to those from the far stations. Multivariate analysis showed that the smaller feeding structures and gut, lower consumption rates and lower gonad indices and quality of sea urchins in the intermediate and near fish farms were positively related to lower shoot density, leaf production and species diversity, as well as lower water movement in those stations. The larger size of the Aristotle’s lantern in the far stations was not related to food limitations. More importantly, the phenotypic variability in the feeding structures and gonads of sea urchins in the same seagrass bed provides new evidence regarding the sensitivity of this species to environmental factors that may affect variability in food quality.
- 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern PhilippinesTanaka, Yoshiyuki; Go, Gay Amabelle; Watanabe, Atsushi; Miyajima, Toshihiro; Nakaoka, Masahiro; Uy, Wilfredo H.; Nadaoka, Kazuo; Watanabe, Shuichi; Fortes, Miguel D. (Elsevier, 2014)Effects of fish culture can alter the adjacent ecosystems. This study compared seagrass species compositions in 2012 with those in 1995, when fish culture was less intensive compared to 2012 in the region. Observations were conducted at the same four sites around Santiago Island, Bolinao: (1) Silaqui Island, (2) Binaballian Loob, (3) Pislatan and (4) Santa Barbara, and by using the same methods as those of Bach et al. (1998). These sites were originally selected along a siltation gradient, ranging from Site 1, the most pristine, to Site 4, a heavily silted site. By 2012, fish culture had expanded around Sites 2, 3 and 4, where chlorophyll a (Chl a) was greater in 2012 than in 1995 by one order of magnitude. Enhalus acoroides and Cymodocea serrulata, which were recorded in 1995, were no longer present at Site 4, where both siltation and nutrient load are heavy.