Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
- 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern PhilippinesTanaka, Yoshiyuki; Go, Gay Amabelle; Watanabe, Atsushi; Miyajima, Toshihiro; Nakaoka, Masahiro; Uy, Wilfredo H.; Nadaoka, Kazuo; Watanabe, Shuichi; Fortes, Miguel D. (Elsevier, 2014)Effects of fish culture can alter the adjacent ecosystems. This study compared seagrass species compositions in 2012 with those in 1995, when fish culture was less intensive compared to 2012 in the region. Observations were conducted at the same four sites around Santiago Island, Bolinao: (1) Silaqui Island, (2) Binaballian Loob, (3) Pislatan and (4) Santa Barbara, and by using the same methods as those of Bach et al. (1998). These sites were originally selected along a siltation gradient, ranging from Site 1, the most pristine, to Site 4, a heavily silted site. By 2012, fish culture had expanded around Sites 2, 3 and 4, where chlorophyll a (Chl a) was greater in 2012 than in 1995 by one order of magnitude. Enhalus acoroides and Cymodocea serrulata, which were recorded in 1995, were no longer present at Site 4, where both siltation and nutrient load are heavy.
- A benefit-cost comparison of varying scales and methods of coral reef restoration in the PhilippinesAbrina, Tara Alessandra S.; Bennett, Jeff (Elsevier, 2021-12)The slow rate of recovery in some reefs around the Philippines has prompted the widespread investment in active reef restoration in the country. However, from the point of view of society, these different coral reef restoration investments have not yet been fully compared in a benefit-cost analysis. In this paper, the economic efficiencies of four coral reef investments are compared – at two different scales (local and national) and two different technologies (‘coral gardening’ and ‘mass larval enhancement’). The values are derived from a previous valuation study that used the Choice Modelling method of estimating non-market values of coral reef restoration. The capacity of these values to facilitate comparisons among reef investments is thus assessed in this paper. Based on predictions from reef restoration scientists the Philippines, the mass larval enhancement investments are estimated to produce higher net benefits and benefit-cost ratios compared to those of coral gardening. In terms of scale, higher net social outcomes for the local-scale investments support more localized approaches to coral restoration.
- A comparison of two benthic survey methodsMingoa, S. S. M.; Menez, L. A. B. (Springer, 1988)The belt transect and the flowmeter methods, used to survey sedentary benthic organisms, were compared based on abundance estimates of tridacnid clams in the Cagayan Islands, Philippines, in April 1985. Two-way ANOVA and chi-square tests (P<0.05) show that both methods recorded similar estimates for the number of clams (regardless of species), both methods gave similar estimates for the number of individuals per species, and one or both methods may be biased for certain sizes of clams. Individuals smaller than 6 cm shell length seemed to be underestimated by the flowmeter method. Future studies must investigate the size selectivity of the method used, for instance by conducting permanent belt, transect surveys of varied belt widths (e.g. 1, 1.5,2,2.5 m) and then comparing the recorded lengths of the most abundant clams. This will aid investigators to evaluate their data properly, and enable comparison of clam-stock estimates between surveys.
- A multi-framework analysis of stakeholders’ perceptions in developing a localized blue carbon ecosystems strategy in Eastern Samar, PhilippinesQuevedo, Jay Mar D.; Ferrera, Charissa M.; Faylona, Marie Grace Pamela G.; Kohsaka, Ryo (Springer Science and Business Media LLC, 2024-01-25)Blue carbon ecosystems (BCEs) are vital for global climate change mitigation and offer diverse local ecosystem co-benefits. Despite existing literatures on integrating national and international BCE agendas at the local level, the development and implementation of localized BCE strategies often lag behind. To provide insights on this knowledge gap, we present a case study conducted in Eastern Samar, Philippines. Employing a multi-framework analysis- encompassing DPSIR (drivers, pressures, state, impact, responses), SOAR (strengths, opportunities, aspirations, results), and PESTLE (political, economic, social, technological, legal, environmental) frameworks, stakeholder perceptions collected from focus group discussions highlight issues and challenges in developing and implementing a BCE strategy. Findings reveal that the aftermath of Typhoon Haiyan in 2013 in the study sites stimulated conservation efforts and raised awareness, but governance structures and policy enforcement influence the success and longevity of management and conservation efforts. Through the integration of multiple frameworks, this study outlined a potential localized BCE strategy, emphasizing both internal priorities such as stakeholder engagement and alternative livelihoods and external priorities related to policy and technological supports. While developed based on a specific case study in the Philippines, the proposed strategy is presented in a general manner, enabling its potential replication in other provinces in the Philippines or in countries with similar geographic settings.
- A review of the status of Philippine reefsGomez, E. D.; Aliño, P. M.; Yap, H. T.; Licuanan, W. Y. (Elsevier BV, 1994-01)Since 1979, the status of Philippine reefs has been periodically updated. While conditions of the reefs during the early surveys were assessed in terms of live coral cover per se, the ‘coral mortality index’ was applied to the sets of data collected during the past 7 yr which may be a better gauge in determining the health of the reefs. Generally, most reefs surveyed are in fair condition. Major destructive factors described are sedimentation and siltation from coastal development and activities inland, illegal and destructive methods of fishing, and overfishing. If the reefs are to continue to provide for the present and future users, the ecological processes that render them productive must be maintained through integrated approaches of coastal area management.
- Accumulation and exposure classifications of plastics in the different coastal habitats in the western Philippine archipelagoGomez, Norchel Corcia F.; Cragg, Simon M.; Ghiglione, Jean-François; Onda, Deo Florence L. (Elsevier, 2023-11)Studies consistently ranked the Philippines as one of the top contributors of plastic wastes leaking into the ocean. However, most of these were based on probabilities and estimates due to lack of comprehensive ground-truth data, resulting also in the limited understanding of the contributing factors and drivers of local pollution. This makes it challenging to develop science-driven and locally-contextualized policies and interventions to mitigate the problem. Here, 56 sites from different coastal habitats in the western Philippine archipelago were surveyed for macroplastics standing stock, representing geographic regions with varying demography and economic activities. Clustering of sites revealed three potential influencing factors to plastic accumulation: population density, wind and oceanic transport, and habitat type. Notably, the amount and types of dominant plastics per geographic region varied significantly. Single-use plastics (food packaging and sachets) were the most abundant in sites adjacent to densely populated and highly urbanized areas (Manila Bay and eastern Palawan), while fishing-related materials dominated in less populated and fishing-dominated communities (western Palawan and Bolinao), suggesting the local industries significantly contributing to the mismanaged plastics in the surveyed sites. Meanwhile, isolated areas such as islands were characterized by the abundance of buoyant materials (drinking bottles and hygiene product containers), emphasizing the role of oceanic transport and strong connectivity in the oceans. Exposure assessment also identified single-use and fishing-related plastics to be of “high exposure (Type 4)” due to their high abundance and high occurrence. These increase their chances of encountering and interacting with organisms and habitats, thus, resulting into more potential harm. This study is the first comprehensive work done in western Philippines, and results will help contextualize local pollution, facilitating more effective management and policymaking.
- Age, growth, and population structure of Conomurex luhunuasSanchez-Escalona, Katherine; Aliño, Porfirio (National Fisheries Research and Development Institute, 2022-12)Age and growth dynamics of Conomurex luhuanus were investigated to determine the population structure. Age-specific change in shell shape determined with geometric morphometrics revealed discrimination of shape between 0-3 years old at 99–100% while 3–4 years old can be separated with 81% certainty. Using the age discrimination data, K and L∞ were estimated at 1.00 year and 7.28 cm, respectively. Recruitment is bimodal with natural mortality (M) of 0.71 and fishing mortality (F) approximated at 3.92 year. The exploitation rate (E) is 0.85 year, indicating probable overharvesting of the population under study. The presence of a deep-water population, age-specific burying behavior, and bimodal recruitment pattern are possible resilience factors.The study was supported by a grant from PCAARRD-DOST.
- Anti-inflammatory activity of monosubstituted xestoquinone analogues from the marine sponge Neopetrosia compactaSusana, Shalice R.; Salvador-Reyes, Lilibeth A. (MDPI, 2022-03-22)Chronic inflammation is recognized as a contributor to multiple chronic diseases, such as cancer, cardiovascular, and autoimmune disorders. Here, a natural products-initiated discovery of anti-inflammatory agents from marine sponges was undertaken. From the screening of 231 crude extracts, a total of 30 extracts showed anti-inflammatory activity with no direct cytotoxic effects at 50 μg/mL on RAW 264.7 (ATCC®TIB-71™) murine macrophage cells stimulated with 1 μg/mL lipopolysaccharide (LPS). Bioactivity-guided purification of the anti-inflammatory extract from the sponge Neopetrosia compacta led to the isolation of xestoquinone (1), adociaquinone B (2), adociaquinone A (3), 14-hydroxymethylxestoquinone (4), 15-hydroxymethylxestoquinone (5), and an inseparable 2:1 mixture of 14-methoxyxestoquinone and 15-methoxyxestoquinone (6). Compounds 1–6 caused a concentration-dependent reduction of nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells, with 4–6 having low micromolar IC50 and acceptable selectivity index. Gene expression analysis using qRT-PCR showed that 1, 5, and 6 downregulated Il1b and Nos2 expression by 2.1- to 14.8-fold relative to the solvent control at 10 μM. Xestoquinone (1) and monosubstituted analogues (4–6), but not the disubstituted adociaquinones (2 and 3), caused Nrf2 activation in a luciferase reporter MCF7 stable cells. Compounds 5 and 6 caused a modest increase in Nqo1 gene expression at 10 μM. The anti-inflammatory activity of xestoquinone (1) and monosubstituted analogues (4–6) may, in part, be mediated by Nrf2 activation, leading to attenuation of inflammatory mediators such as IL-1β and NOS2.Samples were collected under gratuitous permit numbers GP-0084-15 and GP-0123-17, issued by the Department of Agriculture of the Philippines. We thank the municipalities of Bolinao, Pangasinan, and Puerto Galera, Oriental Mindoro for permission for sample collection. We acknowledge assistance from Z. L. Malto and DDHP chemical ecology group in obtaining the mass spectrometric data and sample collection, respectively.
- Aspects of the growth, recruitment, mortality and reproduction of the scallop Amusium pleuronectes (Linné) in the Lingayen Gulf, PhilippinesDel Norte, A. G. C. (Informa UK Limited, 1988-11)Growth, recruitment, mortality and reproduction were investigated in the Asian moon scallop, Amusium pleuronectes (Linne) from the Lingayen Gulf, Philippines. Allometric relationships were defined by comparing different shell dimensions, as well as body weight proportions including total weight with shell, visceral weight, adductor muscle weight and gonad weight. Use of the von Bertalanffy-based ELEFAN I program yielded estimates of growth parameters equivalent to H ∞ = 106Dimshell height and K = 0.92 per year, with approximate longevity for the species of about 2 years. Recruitment, as derived using the ELEFAN II program, occurred throughout the year, but showed a pattern consisting of one major and one minor pulse separated by an 8- and 4-months interval. Fishing mortality (F = 5.3) was higher than natural mortality (M = 1.9). Spawning occurred throughout the year, with one major peak in February and one minor peak between July and September, thereby providing some biological basis to the recruitment pattern indicated. Protandry and size at sexual maturity (54 mm) in the species were confirmed.
- Assessing the efficiency of microplastics extraction methods for tropical beach sediments and matrix preparation for experimental controlsBonita, Jan Danielle P.; Gomez, Norchel Corcia F.; Onda, Deo Florence L. (Frontiers Media SA, 2023-11-03)Introduction: Microplastic pollution has become a global issue, eliciting attention not just from the scientific community but also both from the public and governmental bodies. Drawing data-driven policies and interventions, however, remain difficult due to the severely lacking baseline information from different environments such as beaches. One of the challenges in doing baseline studies is the lack of harmonized methodologies that will allow for comparison of results, integration of data, and its effective translation to evidence-based policies. Emphasis on quality control measures among baselining efforts through the proper implementation of experimental controls is also lacking. Methodology: To address these gaps, we compared methodologies for preparing the sediment matrix for experimental controls, as well as evaluated protocols for extracting microplastics from tropical beach sediments. Beach sediments were collected, dried, sieved, and spiked with known amounts of microplastics of different polymer types. The removal and extraction efficiencies of the protocols being compared were evaluated. Results and discussion: Our results showed that subjecting beach sediments to a furnace at 550° C for 4 hours is the most efficient way to remove plastic contamination, implying its applicability for preparing experimental controls. Meanwhile, a modified version of Masura et al. (2015), one of the widely cited methodologies for microplastics extraction, exhibited the highest mean extraction efficiency (99.05 ± 0.82%) among the protocols being compared. Results of this work will be useful in identifying methods that can be adopted and utilized for research and baselining efforts not just in the Philippines but also in Southeast Asia. This will also be helpful in the harmonization of methods, data reporting, and even skills as implemented through the regional and national action plans to address marine plastic pollution.The authors would like to thank the members of the Microbial Oceanography Laboratory of the University of the Philippines, The Marine Science Institute, especially Mark Prudente and Kim John Balboa who provided assistance during the conduct of the experiment, and the staff and administrative personnel of the Bolinao Marine Laboratory.
- Associated effects of shading on the behavior, growth, and survival of Stichopus cf. horrens juvenilesRioja, Rose Angeli; Palomar-Abesamis, Nadia; Juinio–Meñez, Marie Antonette (Springer Science and Business Media LLC, 2021-07-07)Stichopus cf. horrens is an emergent culture species. It is known to be nocturnal and negatively phototactic; hence, determining its behavioral and growth responses to different light regimes is essential in optimizing culture protocols. This study examined the interactive effects of shading and relative food availability on the feeding pattern, absolute growth rates, and survival of juvenile S. cf. horrens. Six-month-old juveniles (4.27 to 19.41 g) were reared in replicate aquaria with three different shading treatments (covered, exposed, and half-covered aquaria) under ambient light conditions for 30 days. Juveniles in the exposed treatment with high microalgal biomass (13.44 ± 4.57 mg/g) had the highest growth rates (0.10 ± 0.05 g/day) but also the highest mortality (50%). In contrast, juveniles in the covered treatment had the lowest growth (−0.07 ± 0.03 g/day) but the highest survival (100%). Growth rates in the half-covered treatment were comparable with the exposed, and survival was higher than in the covered treatment. These indicate a trade-off between growth associated with more food and mortality risks due to light-induced stress. Juveniles in the half-covered treatment showed a significant preference to stay in the shaded portion whenever they were inactive during the day, suggesting avoidance to high light intensities (4726.51 ± 1582.43 Lux). Results of this study suggest that careful calibration of light intensities in nursery systems may help enhance juvenile growth. For indoor systems that may have limited space or surfaces for microalgal growth, cultured benthic diatom can be added to the partially covered tanks to increase the food available for the juveniles.
- Asterocladon ednae sp. nov. (Asterocladales, Phaeophyceae) from the PhilippinesSasagawa, Eriko; Santiañez, Wilfred John E.; Kogame, Kazuhiro (Wiley, 2022-06-21)Members of the brown algal order Asterocladales are characterized by stellate arrangement of its chloroplasts, in which a stellate configuration has a protruding central pyrenoid complex. The order is represented by the genus Asterocladon, which consists of only three species so far. Similar to other small and filamentous seaweeds, studies on Asterocladon remain scant and their diversity poorly understood. To fill this gap, we conducted molecular-assisted taxonomic studies on Asterocladon based on seven culture isolates collected from Okinawa Prefecture, Japan and Cebu, the Philippines. One culture isolate from the Philippines was revealed to be a new species of Asterocladon based on morpho-anatomical and molecular analyses using rbcL and psaA genes and is described here as Asterocladon ednae. The other isolates were attributed to A. rhodochortonoides. A. ednae was most closely related to A. rhodochortonoides in morphology and molecular phylogeny but was distinguished from the latter by its elongately ellipsoid plurilocular sporangia. This is the first report of the genus and species A. ednae in the Philippines, further increasing the diversity of seaweeds in the country.
- Attachment of potential cultivable primo-colonizing bacteria and its implications on the fate of low-density polyethylene (LDPE) plastics in the marine environmentBitalac, Justine Marey S.; Lantican, Nacita B.; Gomez, Norchel Corcia F.; Onda, Deo Florence L. (Elsevier, 2023-06-05)Plastics released in the environment become suitable matrices for microbial attachment and colonization. Plastics-associated microbial communities interact with each other and are metabolically distinct from the surrounding environment. However, pioneer colonizing species and their interaction with the plastic during initial colonization are less described. Marine sediment bacteria from sites in Manila Bay were isolated via a double selective enrichment method using sterilized low-density polyethylene (LDPE) sheets as the sole carbon source. Ten isolates were identified to belong to the genera Halomonas, Bacillus, Alteromonas, Photobacterium, and Aliishimia based on 16S rRNA gene phylogeny, and majority of the taxa found exhibit a surface-associated lifestyle. Isolates were then tested for their ability to colonize polyethylene (PE) through co-incubation with LDPE sheets for 60 days. Growth of colonies in crevices, formation of cell-shaped pits, and increased roughness of the surface indicate physical deterioration. Fourier-transform infrared (FT-IR) spectroscopy revealed significant changes in the functional groups and bond indices on LDPE sheets separately co-incubated with the isolates, demonstrating that different species potentially target different substrates of the photo-oxidized polymer backbone. Understanding the activity of primo-colonizing bacteria on the plastic surface can provide insights on the possible mechanisms used to make plastic more bioavailable for other species, and their implications on the fate of plastics in the marine environment.
- Benthic energy dynamics in a southern Baltic ecosystemYap, H. T. (Springer, 1991-10)Benthic components and metabolic activity at two stations in the Darss-Zingst estuary (eastern German Baltic coast) were investigated over a seasonal cycle from April 1985 to August 1986. As has been established for temperate and boreal ecosystems, peaks in the biomass of benthic microphytes occurred in the spring and late autumn to winter, presumably caused by settling phytoplankton blooms. Metabolic activity of the benthos did not increase with rising ambient temperatures. Rather, the highest values of oxygen consumption were recorded during the cooler months (spring and winter), when increased numbers of organisms were also observed. This may be a response to a greater food supply to the sediment in the form of settling phytoplankton during these times of year.
- Characteristics of marine heatwaves in the PhilippinesEdullantes, Brisneve; Concolis, Brenna Mei M.; Quilestino-Olario, Raven; Atup, Dale Patrick D.; Cortes, Aiza; Yñiguez, Aletta T. (Elsevier, 2023-09)Marine Heatwaves (MHWs) are prolonged, discrete, and anomalously warm events, which have recently gained global attention due to their far-reaching effects and reported impacts. Although intensive studies have been carried out at global and regional scales, these events remained understudied in the Philippines – a country with high marine biodiversity. The Philippines is highly vulnerable to the impacts of these extreme events as it lies in the western boundary of the Pacific that is considered as a hotspot for MHWs. The present study used multi-year climatic sea surface temperature (SST) record to detect MHWs in the Philippines. The detected events were then characterized using the standardized metrics. Linear trend analysis was conducted to determine the magnitude and direction of the change of the MHW metrics over time. Decadal trend revealed that MHWs in the Philippines significantly increased from seven MHWs in the 1980s to 37 MHWs in the last decade. Moreover, increased duration was remarkable in 2020 with 276 MHW days. MHW frequency and duration were increasing at a rate almost twice as its neighboring waters. Intensities did not significantly increase with time, but the highest SST anomaly is associated with El Niño Southern Oscillation. Furthermore, the eastern and western region of the Philippines is vulnerable to MHWs, but hotspots are mostly confined in the West Philippine Sea and western tropical Pacific. An in-depth investigation of the drivers of MHWs is recommended to understand the physical mechanisms of the development of these extreme thermal events in the Philippine seas. The findings have significant implications for coastal marine resource management, highlighting the need for adaptive management strategies and increased monitoring and research efforts to mitigate the impacts of MHWs on marine ecosystems and local economies in the Philippines.
- Characterizing the vertical phytoplankton distribution in the Philippine Sea off the northeastern coast of LuzonCordero-Bailey, Kristina; Bollozos, Iris Salud F.; Palermo, Joseph Dominic H.; Silvano, Kathleen M.; Escobar, Ma. Teresa L.; Jacinto, Gil S.; San Diego-McGlone, Maria Lourdes; David, Laura T.; Yñiguez, Aletta T. (Elsevier BV, 2021-06)The vertical distribution of phytoplankton in the open ocean shows an increase in biomass at a depth referred to as the Subsurface Chlorophyll Maximum (SCM) that contributes significantly to the primary production of the water column. Hence, it is important to understand the dynamics that lead its formation and maintenance. This study examines the SCM in the Philippine Sea off the northeast coast of Luzon, utilizing bio-optical and empirical phytoplankton data from two oceanographic cruises conducted northeast of the island of Luzon in May/June 2011 and April/May 2012. Chlorophyll (Chl) profiles were converted to smoothed chlorophyll functions by using a b-spline basis. In 2011, the mean SCM depth was 97.24 m ± 22.33 m with mean SCM concentration of 0.43 μg/L ± 0.09 μg/L while in 2012, mean SCM was deeper at 115.45 m ± 24.25 m and mean SCM concentration of 0.31 ± 0.09 μg/L. Functional principal component analysis showed that the first principal component (PC) explained variability in the SCM depth, the second PC showed variability in the magnitude of the SCM concentration while the third PC accounted for the presence of multiple peaks. K-means clustering using the principal components resulted in three clusters which represented the offshore stations with the deepest SCM, stations within an observed cyclonic eddy with intermediate SCM and stations with coastal and shelf waters showing shallow SCM. Correlation analyses between Chl and physico-chemical and bio-optical parameters showed that Chl was positively correlated to beam attenuation, a bio-optical property that has been used as an alternative proxy for phytoplankton. This suggests that the observed SCMs represent actual increase in phytoplankton biomass. When the influence of the Kuroshio recirculation gyre was dominant in 2011, cooler temperature in surface waters was seen to significantly increase surface Chl. In 2012, highly saline waters from the tropical North Equatorial Current (NEC) waters appeared to lower the Chl distribution, particularly at the SCM. Phytoplankton abundance was recorded to be higher at the SCM than the surface in both years. In 2011, different species of diatoms dominated all clusters, except at the SCM of the coastal and shelf cluster wherein the dinoflagellate Gyrodinium grossestriatum was dominant. Most dominant species from 2011 were conspicuously absent in 2012 and there was a shift to the diatoms Fragilariopsis (surface), Thalassiosira and Rhizosolenia spp. in all clusters. These provide new insights on the phytoplankton community in relation to the changes in the oceanic circulation from subtropical North Pacific water in 2011 to tropical NEC water in 2012.This work is Marine Science Institute contribution number 482. We would like to acknowledge Dr. Cesar Villanoy and Dr. Olivia Cabrera and the anonymous reviewers who provided invaluable inputs for the development and improvement of the paper.
- Chemical characteristics and gelling properties of agar from two Philippine Gracilaria spp. (Gracilariales, Rhodophyta)Montaño, Nemesio E.; Villanueva, Ronald D.; Romero, Jumelita B. (Springer, 1999)The chemical structure of agars extracted from Philippine Gracilaria arcuata and G. tenuistipitata were determined by NMR and infrared spectroscopy. Agar with alternating 3-linked 6-O-methyl-β-D-galactopyranosyl and 4-linked 3,6-anhydro-2- O-methyl-α-L-galactopyranosyl units was isolated from G. arcuata, while the agar from G. tenuistipitata possesses the regular agarobiose repeating unit with partial methylation at the 6-position of the D-galactosyl residues. Both agars exhibit sulphate substitution at varying positions in the polymer. Chemical analyses reveal higher 3,6-anhydrogalactose and lower sulphate contents in alkali-modified than in native agar from both samples. Also, alkali modification enhanced agar gel strength and syneresis. Native G. arcuata agar produces a viscous solution (2000 cP at 75 °C) with a high gelling point (>60 °C) that forms a soft gel even after alkali modification (gel strength: <300 g cm−2). On the other hand, the agar from G. tenuistipitata exhibits gel qualities typical of most Gracilaria agars.
- Clay mineral nanostructures regulate sequestration of organic carbon in typical fluvial sedimentsSong, Hongzhe; Liu, Zhifei; Lin, Baozhi; Zhao, Yulong; Siringan, Fernando P.; You, Chen-Feng (Elsevier, 2024-02-15)The association between clay minerals and organic carbon is pivotal for understanding transport, burial, and preservation processes of sedimentary organic carbon. However, fine-scale microscopic studies are still limited in assessing the effect of diverse clay mineral structures and properties on organic carbon sequestration. In this study, we employed X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy coupled with energy dispersive spectroscopy and electron energy loss spectroscopy analyses to investigate the nanoscale interaction between clay minerals and organic carbon of two typical fluvial sediment samples with contrasting clay mineral compositions and organic carbon origins. Sample from Taiwan shows abundant illite and chlorite with petrogenic organic carbon, while sample from Luzon has significant smectite with pedogenic organic carbon. We observed that the nanostructure of the clay minerals controls the distribution of organic carbon. In the Luzon sample, the organic carbon is tightly associated with smectite, occupying expandable interlayer spaces. In the Taiwan sample, however, the organic carbon is primarily confined on the surface and edge of illite. These findings offer valuable insights into the selective association of organic carbon with clay minerals and underscore the role of clay mineral nanolayer structures in governing the occurrence and preservation of organic carbon in sediments. A comprehensive understanding of these interactions is crucial for accurate assessments of carbon cycling and sequestration in the natural environment.We sincerely thank Shunai Che and Lu Han for their help in TEM experiments and data processing. We thank Editor Dr. Andrew Hursthouse for handling the manuscript and two anonymous reviewers for their constructive comments on the early version of this paper. This work was supported by the National Natural Science Foundation of China (42130407, 42188102, 42306066) and the Interdisciplinary Project of Tongji University (ZD-22-202102).
- Clay minerals control silicon isotope variations of fine-grained river sediments: Implication for the trade-off between physical erosion and chemical weatheringLing, Chen; Liu, Zhifei; Yu, Xun; Zhao, Yulong; Siringan, Fernando P.; Le, Khanh Phon; Sathiamurthy, Edlic; You, Chen-Feng; Chen, Kaiyun (Elsevier, 2024)Stable silicon (Si) isotopes in fluvial sediments can provide insights into understanding silicate weathering processes on the Earth's surface. However, a lack of comprehensive studies has hindered full understanding of the factors influencing Si isotope fractionation during continental weathering. In this study, through the analysis of Si isotopes in fine-grained sediments from 13 rivers surrounding the South China Sea, significant variation of Si isotopes in bulk detrital sediments (<63 μm) was observed, with δ30Si values ranging from −0.17‰ to −1.09‰. At basin scale, the δ30Si values are influenced by multiple controlling factors such as climatic conditions, lithology, and tectonic settings, which have a close relationship with the content of clay minerals. The characteristics of weathering types and intensities are ultimately reflected in the weathering products, specifically clay minerals. Compiling data across multiple grain sizes from major rivers globally, robust correlations based on clay mineral classification between δ30Si and Al/Si ratio have been observed, which are unaffected by regional and grain-size variations. As the dominant clay mineral group transitions from illite/chlorite to smectite and kaolinite, the degree of Si isotope fractionation increases progressively. This sequence indicates a shift from stronger physical erosion to more intensive chemical weathering, suggesting a transition in the weathering regime from weathering-limited to transport-limited. This study reveals the intrinsic link between Si isotopic compositions and clay mineral assemblages, providing implications for similar stable isotope research and offering a potential indicator for understanding continental weathering processes and their contributions to the global carbon cycle.
- Clonal propagation of Eucheuma denticulatum and Kappaphycus alvarezii for Philippine seaweed farmsDawes, C. J.; Trono, G. C.; Lluisma, A. O. (Springer, 1993-06)Technique improvement and cost reduction of branch culture, micropropagation, and callus production of carrageenan-yielding seaweeds Kappaphycus alvarezii and Eucheuma denticulatum is presented. Low cost branch culture is possible by enriching seawater with 0.1% coconut water with 1 mg l−1 indole-3-butyric acid for 24 h wk−1 or continuous culture with 0.01% Algafer, a Philippine fertilizer. Micropropagation of 0.5 cm explants had almost 100% new branch production demonstrating the viability of callus regenerated plants. The use of carrageenan as a media for callus production was not effective when compared to agar. Propagules of both species, transferred from the University of the Philippine Marine Science Institute (UPMSI) culture facility to the field, showed daily percent growth rates of 5 to 5.5% d−1 over 84 days. Based on the costs of the UPMSI laboratory, a culture facility in the seaweed farming area is estimated to cost about U. S. $22000 during the initial year and 58% less the second year.