menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 10 of 15
  • Bacterial community assembly, succession, and metabolic function during outdoor cultivation of Microchloropsis salina
    Morris, Megan M.; Kimbrel, Jeffrey A.; Geng, Haifeng; Tran-Gyamfi, Mary Bao; Yu, Eizadora T.; Sale, Kenneth L.; Lane, Todd W.; Mayali, Xavier (American Society for Microbiology, 2022-08-31)

    Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides.

    IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.

  • MPA-FishMApp – a citizen science app that simplifies monitoring of coral reef fish density and biomass in marine protected areas
    Abesamis, Rene; Balingit, Rodel; de Castro, Romulo; Aguila, Raphael Nelo; Cabiguin, Maryjune; Villagracia, Julius; Susmeña, Marynoll; Montemar, Mario Neil; Yocor, Antonio (National Fisheries Research and Development Institute, 2022-12)
    Monitoring changes in fish density and biomass inside marine protected areas (MPAs) through fish visual census (FVC) can determine if MPAs are achieving their goal of promoting fish population recovery. Simplified FVC methods have been developed for citizen scientists to enable them to monitor fish populations in MPAs. However, MPA monitoring programs led by local stakeholders remain rare and difficult to sustain due to technical barriers related to FVC data management. Here, we describe and evaluate a novel online app called MPA-FishMApp, which we developed to help stakeholders of MPAs that protect coral reefs in the Philippines efficiently store, analyze, and visualize FVC data. MPA-FishMApp is coupled to a simplified FVC method wherein the observer records only 21 reef fish species groups during surveys. The app provides a simple data entry interface, cloud storage, and algorithms to estimate fish density and biomass. Spatial and temporal trends in fish density and biomass can be instantaneously visualized in the app based on relative importance to fisheries. Field testing suggested that the MPA-FishMApp methodology (simplified FVC and app) is sensitive enough to detect qualitative patterns showing differences in density and biomass that may develop between MPAs and fished sites, especially in fishes that are highly important to fisheries. However, users must have sufficient training and experience in simplified FVC to produce reliable data. MPA-FishMApp may help reverse the lack of monitoring in MPAs across the Philippines and offers an accessible, transparent, and auditable venue for collaboration between citizen scientists and professional scientists.
  • A conserved biosynthetic gene cluster is regulated by quorum sensing in a shipworm symbiont
    Robes, Jose Miguel D.; Altamia, Marvin A.; Murdock, Ethan G.; Concepcion, Gisela; Haygood, Margo G.; Puri, Aaron W. (American Society for Microbiology, 2022-06-14)
    Bacterial symbionts often provide critical functions for their hosts. For example, wood-boring bivalves called shipworms rely on cellulolytic endosymbionts for wood digestion. However, how the relationship between shipworms and their bacterial symbionts is formed and maintained remains unknown. Quorum sensing (QS) often plays an important role in regulating symbiotic relationships. We identified and characterized a QS system found in Teredinibacter sp. strain 2052S, a gill isolate of the wood-boring shipworm Bactronophorus cf. thoracites. We determined that 2052S produces the signal N-decanoyl-l-homoserine lactone (C10-HSL) and that this signal controls the activation of a biosynthetic gene cluster colocated in the symbiont genome that is conserved among all symbiotic Teredinibacter isolates. We subsequently identified extracellular metabolites associated with the QS regulon, including ones linked to the conserved biosynthetic gene cluster, using mass spectrometry-based molecular networking. Our results demonstrate that QS plays an important role in regulating secondary metabolism in this shipworm symbiont. This information provides a step toward deciphering the molecular details of the relationship between these symbionts and their hosts. Furthermore, because shipworm symbionts harbor vast yet underexplored biosynthetic potential, understanding how their secondary metabolism is regulated may aid future drug discovery efforts using these organisms.
  • Somatostatin venom analogs evolved by fish-hunting cone snails: From prey capture behavior to identifying drug leads
    Ramiro, Iris Bea L.; Bjørn-Yoshimoto, Walden E.; Imperial, Julita S.; Gajewiak, Joanna; Salcedo, Paula Flórez; Watkins, Maren; Taylor, Dylan; Resager, William; Ueberheide, Beatrix; Bräuner-Osborne, Hans; Whitby, Frank G.; Hill, Christopher P.; Martin, Laurent F.; Patwardhan, Amol; Concepcion, Gisela; Olivera, Baldomero M.; Safavi-Hemami, Helena (American Association for the Advancement of Science, 2022-03-25)
    Somatostatin (SS) is a peptide hormone with diverse physiological roles. By investigating a deep-water clade of fish-hunting cone snails, we show that predator-prey evolution has generated a diverse set of SS analogs, each optimized to elicit specific systemic physiological effects in prey. The increased metabolic stability, distinct SS receptor activation profiles, and chemical diversity of the venom analogs make them suitable leads for therapeutic application, including pain, cancer, and endocrine disorders. Our findings not only establish the existence of SS-like peptides in animal venoms but also serve as a model for the synergy gained from combining molecular phylogenetics and behavioral observations to optimize the discovery of natural products with biomedical potential.
  • Thumbnail Image
    Modified oxylipins as inhibitors of biofilm formation in Staphylococcus epidermidis
    Peran, Jacquelyn E.; Salvador-Reyes, Lilibeth A. (Frontiers Media SA, 2024-05-23)
    New approaches to combating microbial drug resistance are being sought, with the discovery of biofilm inhibitors considered as alternative arsenal for treating infections. Natural products have been at the forefront of antimicrobial discovery and serve as inspiration for the design of new antibiotics. We probed the potency, selectivity, and mechanism of anti-biofilm activity of modified oxylipins inspired by the marine natural product turneroic acid. Structure-activity relationship (SAR) evaluation revealed the importance of the trans-epoxide moiety, regardless of the position, for inhibiting biofilm formation. trans-12,13-epoxyoctadecanoic acid (1) and trans-9,10 epoxyoctadecanoic acid (4) selectively target the early stage of biofilm formation, with no effect on planktonic cells. These compounds interrupt the formation of a protective polysaccharide barrier by significantly upregulating the ica operon’s transcriptional repressor. This was corroborated by docking experiment with SarA and scanning electron micrographs showing reduced biofilm aggregates and the absence of thread-like structures of extrapolymeric substances. In silico evaluation revealed that 1 and 4 can interfere with the AgrA-mediated communication language in Staphylococci, typical to the diffusible signal factor (DSF) capacity of lipophilic chains.
  • Thumbnail Image
    Mining small molecules from Teredinibacter turnerae strains isolated from Philippine Teredinidae
    Villacorta, Jamaine B.; Rodriguez, Camille V.; Peran, Jacquelyn E.; Batucan, Jeremiah D.; Concepcion, Gisela; Salvador-Reyes, Lilibeth A.; Junio, Hiyas A. (MDPI, 2022-11-21)
    Endosymbiotic relationship has played a significant role in the evolution of marine species, allowing for the development of biochemical machinery for the synthesis of diverse metabolites. In this work, we explore the chemical space of exogenous compounds from shipworm endosymbionts using LC-MS-based metabolomics. Priority T. turnerae strains (1022X.S.1B.7A, 991H.S.0A.06B, 1675L.S.0A.01) that displayed antimicrobial activity, isolated from shipworms collected from several sites in the Philippines were cultured, and fractionated extracts were subjected for profiling using ultrahigh-performance liquid chromatography with high-resolution mass spectrometry quadrupole time-of-flight mass analyzer (UHPLC-HRMS QTOF). T. turnerae T7901 was used as a reference microorganism for dereplication analysis. Tandem MS data were analyzed through the Global Natural Products Social (GNPS) molecular networking, which resulted to 93 clusters with more than two nodes, leading to four putatively annotated clusters: lipids, lysophosphatidylethanolamines, cyclic dipeptides, and rhamnolipids. Additional clusters were also annotated through molecular networking with cross-reference to previous publications. Tartrolon D cluster with analogues, turnercyclamycins A and B; teredinibactin A, dechloroteredinibactin, and two other possible teredinibactin analogues; and oxylipin (E)-11-oxooctadec-12-enoic acid were putatively identified as described. Molecular networking also revealed two additional metabolite clusters, annotated as lyso-ornithine lipids and polyethers. Manual fragmentation analysis corroborated the putative identification generated from GNPS. However, some of the clusters remained unclassified due to the limited structural information on marine natural products in the public database. The result of this study, nonetheless, showed the diversity in the chemical space occupied by shipworm endosymbionts. This study also affirms the use of bioinformatics, molecular networking, and fragmentation mechanisms analysis as tools for the dereplication of high-throughput data to aid the prioritization of strains for further analysis.
    The research was completed under the supervision of the Department of Agriculture-Bureau of Fisheries and Aquatic Resources (DA-BFAR), Philippines in compliance with Prior Informed Consent (PIC) certificate requirements and all required legal instruments and regulatory issuances covering the conduct of the research. The authors would also like to acknowledge the Department of Science and Technology-funded Discovery and Development of Health Products Program (DOST-DDHP) for the LC-MS Facility of the Institute of Chemistry, University of the Philippines Diliman.
  • Local tide and geoid corrections significantly improve coastal retracked Jason sea surface heights in the Philippines
    Flores, Paul Caesar; Reyes, Rosalie; Amedo-Repollo, Charina Lyn; Rediang, Abegail; Alfante, Rey Mark; Bauzon, Ma. Divina Angela; Pasaje, Nikki; Bringas, Dennis (Science and Technology Information Institute, 2022-11-08)
    Retracking algorithms increase the accuracy of coastal sea surface height (SSH) measurements. However, it is still important to validate these retracking estimates with tide gauge (SSHtg) observations. We downloaded the freely available Jason altimeter SSH processed using the XTRACK-ALES algorithm, then detided the SSH using different tide models. The first model is the default tidal correction based on Finite Element Solution 2014 (SSHfes), and the second model is the T_Tide harmonic analysis of the nearest tide gauge (SSHaltimeter). SSHfes showed a very poor correlation (< 0.31) and very high root mean square error (RMSE, > 29 cm). In contrast, SSHaltimeter generally showed a very high correlation (> 0.91) and low RMSE (< 17.4 cm). A further quality check based on the average and standard deviation of the difference between the SSH readings (SSHfes – SSHtg and SSHaltimeter – SSHtg) also showed the superior performance of SSHaltimeter,which scored < 9.3 and < 16.5 cm, respectively; compared to SSHfes, which scored < 9.3 cm and > 27 cm for the same parameters. The poor performance from the SSHfes likely comes from the complex bathymetry and coastal geomorphology of the country, which is not accounted for in the FES. The Philippines generally has a narrow shelf, and the FES tide corrections may be related to deep-water tides rather than the shallow-water tides observed from tide gauges. Despite the high correlation and agreement between the SSHaltimeter and SSHtg, the rate of sea level rise from the SSHaltimeter in some sites is more than twice the rate from SSHtg, which indicates the possible influence of the vertical land movement.
    This study was supported by grants to R.B. Reyes by the Department of Science and Technology–Philippine Council for Industry, Energy, and Emerging Technology Research and Development through the Coastal Sea Level Rise Philippines Project. We also thank the anonymous reviewers for their feedback on how to improve the manuscript.
  • Thumbnail Image
    Synthesis and biological evaluation of cyanobacterial-inspired peptides
    Casanova, Jannelle R.; Villaraza, Aaron Joseph L.; Salvador-Reyes, Lilibeth (Philippine-American Academy of Science and Engineering, 2024-03-18)
    Cyanobacteria are known producers of structurally diverse and potent natural products; the majority are peptides with unique modifications. Yet, there remains a huge underexplored chemodiversity from cyanobacteria. Here, we designed a linear octapeptide as a product of combinatorial peptide design inspired by the natural products from the filamentous cyanobacteria Hapalosiphon welwitschii and Leptolyngbya sp. The target peptide was synthesized via solid-phase peptide synthesis (SPPS) using fluorenylmethyloxycarbonyl-protecting group (Fmoc) strategy. Structural diversity was expanded by the substitution of unnatural amino acids to yield five analogues. The structure and sequence of the synthesized peptides were confirmed using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Biological activity evaluation was done; with none of the peptides showing antimicrobial or cytotoxic activities against microbial pathogens and mammalian cells, respectively. To our knowledge, this study is the first to report a combinatorial peptide design inspired by a natural product and a predicted biosynthetic product. This strategy of peptide design expands the chemistry of a known bioactive natural product with the aid of unexplored cyanobacterial biosynthetic gene clusters.
    This study was funded by the Philippine Council for Health Research and Development – Department of Science and Technology through the Discovery and Development of Health Products – Marine Component Program. J.R.C acknowledges scholarship support from the Accelerated Science and Technology Human Resource Development Program of the Department of Science and Technology – Science Education Institute. We acknowledge the assistance of Z. Malto, J. Peran and S. Susana in the conduct of the biological assays. This is MSI Contribution No. 502.
  • Thumbnail Image
    Genomics and metabolomics-based assessment of the biosynthetic potential of the sponge-associated microorganism Streptomyces cacaoi strain R2A-843A from the Philippines
    Malto, Zabrina Bernice L.; Reyes, Joeriggo M.; Lo, Bernard Isaiah; Davis, Kevin Bossie S.; Concepcion, Gisela; Salvador-Reyes, Lilibeth A. (Philippine-American Academy of Science and Engineering, 2023-10-20)
    The biosynthetic machinery of the sponge-associated Streptomyces cacaoi strain R2A-843A was assessed using a combined genomics and metabolomics approach. Whole genome sequencing and molecular networking showed the high biosynthetic potential of this actinomycete. A significant proportion of the genome is dedicated to secondary metabolite production, with biosynthetic gene clusters for nonribosomal peptides, polyketides, and terpenes being the most represented. Seven cyclic pentapeptides, including a putative new analogue, and a glycosylated lanthipeptide were identified using HRMS and untargeted MS/MS analysis. To validate our genome and metabolome analysis, we undertook a mass spectrometry-guided purification and confirmed the production of the known peptides BE-18257A (1) and BE-18257B (2). The production of 1 and 2 and the growth of the microorganism were monitored for eight days. Compound 2 was produced at a higher concentration, starting at 48 h post-incubation. Both compounds were noncytotoxic against colorectal and breast cancer cell lines.
    The authors acknowledge funding support from the Department of Science and Technology - Philippine Council for Health Research and Development through the Discovery and Development of Health Products - Marine Component Program. Genome sequencing was made possible through the CHEDPCARI IHITM63 Project. We thank Ms. Shalice R. SusanaGuevarra for conducting the bioactivity assay. This work was done under the supervision of the Bureau of Fisheries and Aquatic Resources under Gratuitous Permit No. FBP-0035-10. This is MSI Contribution No. 501.
  • Genome mining of a novel marine sponge symbiont Nocardia sp. BML-15-R-026U reveals high biosynthetic potential for secondary metabolites, including a non-ribosomal peptide and a polyketide of high novelty
    Gloria, Paul Christian; Romines, Elaine; Punzalan, Marc Jeremie; Florece, Christine Marie; Cadorna, Kreighton; Salvador-Reyes, Lilibeth; Lluisma, Arturo (Philippine-American Academy of Science and Engineering, 2023-11-28)
    Antibiotic and drug resistance poses serious global public health threats, leading to substantial infections and fatalities annually. Addressing these issues requires the discovery of novel bioactive compounds and a faster and more cost-effective discovery process. However, traditional approaches, which require isolation and multi-step purification of compounds from organisms and running of initial assays, suffer from serious limitations such as the need for substantial amounts of biological material and high rates of compound rediscoveries. Because the biosynthetic capabilities of organisms are encoded in their genomes, genome mining provides a promising solution that would complement traditional approaches. This study conducted long-read whole genome sequencing on a marine sponge symbiont, Nocardia sp. BML-15-R-026U, to explore its genomic repertoire of secondary metabolite-encoding Biosynthetic Gene Clusters (BGCs). A four-contig genome assembly was generated for this isolate with a high degree of completeness and an estimated genome size of 4.84 Mbp. Its genome displays remarkable biosynthetic potential by containing at least 34 distinct secondary metabolite BGCs, predominantly Non-Ribosomal Peptide Synthetase (NRPS) and Polyketide Synthase (PKS) systems capable of producing novel chemical structures. Further analysis was focused on two genomic regions. In region 3.10, the study predicted a BGC for a novel, serine-rich non-ribosomal peptide with a predicted molecular weight of 2754 g/mol. Region 3.12 contained an iterative type-I PKS BGC, suggesting the potential synthesis of a polyketide compound with oxidoreductase-inhibiting properties. This study highlights genome mining as a productive early-phase approach for identifying promising drug leads and has identified the most promising candidates among this isolate’s BGCs for experimental validation.
    The study was funded by the Philippine Council for Health Research and Development – Department of Science and Technology under the “Anti-infective and Anticancer Drug Candidates from Marine Microorganisms and Sponges: Discovery and Development” project, Marine Science Institute – UP Diliman. The authors would like to thank the researchers of the Marine Genomics and Molecular Genetics Laboratory, MSI. The authors would also like to thank the researchers of the Discovery and Development of Health Products – Marine Component Phase I and researchers of the Marine Pharmacognosy Laboratory for the collection and initial analysis of the sample used in this study and storage and maintenance of the bacterial cultures. Sample collection was done under Gratuitous Permit No. GP-0084-15.