menu.header.image.unacom.logo
 

Journal Articles

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Attachment of potential cultivable primo-colonizing bacteria and its implications on the fate of low-density polyethylene (LDPE) plastics in the marine environment
    Bitalac, Justine Marey S.; Lantican, Nacita B.; Gomez, Norchel Corcia F.; Onda, Deo Florence L. (Elsevier, 2023-06-05)
    Plastics released in the environment become suitable matrices for microbial attachment and colonization. Plastics-associated microbial communities interact with each other and are metabolically distinct from the surrounding environment. However, pioneer colonizing species and their interaction with the plastic during initial colonization are less described. Marine sediment bacteria from sites in Manila Bay were isolated via a double selective enrichment method using sterilized low-density polyethylene (LDPE) sheets as the sole carbon source. Ten isolates were identified to belong to the genera Halomonas, Bacillus, Alteromonas, Photobacterium, and Aliishimia based on 16S rRNA gene phylogeny, and majority of the taxa found exhibit a surface-associated lifestyle. Isolates were then tested for their ability to colonize polyethylene (PE) through co-incubation with LDPE sheets for 60 days. Growth of colonies in crevices, formation of cell-shaped pits, and increased roughness of the surface indicate physical deterioration. Fourier-transform infrared (FT-IR) spectroscopy revealed significant changes in the functional groups and bond indices on LDPE sheets separately co-incubated with the isolates, demonstrating that different species potentially target different substrates of the photo-oxidized polymer backbone. Understanding the activity of primo-colonizing bacteria on the plastic surface can provide insights on the possible mechanisms used to make plastic more bioavailable for other species, and their implications on the fate of plastics in the marine environment.
  • Total polyphenol content of tropical marine and coastal flora: Potentials for food and nutraceutical applications
    Narvarte, Bienson Ceasar V.; Genovia, Tom Gerald T.; Hinaloc, Lourie Ann R.; Gonzaga, Shienna Mae C.; Tabonda-Nabor, April Mae; Palecpec, Flora Maye R.; Dayao, Helen M.; Roleda, Michael Y. (Springer, 2023-07-08)
    The marine environment is abundant in natural products that are beneficial to humans. Among these compounds are the polyphenols produced by marine flora as secondary metabolites and used as a defense against stressful environmental conditions. Accordingly, recent pharmacological and biomedical studies showed that polyphenols from marine and coastal floras have several important bioactivities including antioxidant property. In this study, we measured the total polyphenol content (TPC) of 75 species of marine-associated flora. The TPC of their methanolic extracts was measured spectrophotometrically using the Folin-Ciocalteu assay and was expressed both as mg phloroglucinol equivalent per g of dry weight (mg PGE g−1 DW) and as mg gallic acid equivalent per g dry weight (mg GAE g−1 DW). The TPC values are higher when expressed in terms of GAE compared to PGE. Also, the mean TPC of tracheopytes (229 ± 43.0 mg PGE g−1 DW) was higher compared to the mean TPC of macroalgae (69.4 ± 9.59 mg PGE g−1 DW). For macroalgae, ochrophytes (97.9 ± 22.7 mg PGE g−1 DW) had the highest mean TPC followed by chlorophytes (80.0 ± 20.5 mg PGE g−1 DW) and rhodophytes (49.5 ± 8.60 mg PGE g−1 DW). Moreover, our study also showed that TPC varied between young and mature tissues, among different color morphotypes and different parts of the plants. Although the concentrations of total polyphenols varied among species, ages, strains and parts of the plant, our study showed that marine and coastal floras are rich sources of polyphenols that could be further examined for their biological activities and other applications in food industry.