menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Seafloor structures and static stress changes associated with two recent earthquakes in offshore southern Batangas, Philippines
    Sarmiento, Keanu Jershon S.; Aurelio, Mario A.; Flores, Paul Caesar M.; Carrillo, Anne Drew V.; Marfito, Bryan J.; Abigania, Maria Isabel T.; Daag, Arturo S.; Siringan, Fernando P. (Frontiers Media SA, 2022-02-02)
    The 1994 Mw 7.1 Mindoro Earthquake and the 2017 Mw 5.9 Batangas Earthquake Sequence both occurred in offshore southern Batangas and devastated southern Luzon and Mindoro. These earthquakes exhibited NW-striking right-lateral slip in an area presumably defined by a WNW-striking left-lateral fault, therefore implying the existence of previously unmapped offshore faults. High resolution multibeam bathymetry grid and subbottom profiles revealed a conjugate strike-slip fault system under an approximately EW-directed extension. NW-striking right-lateral faults (F1 Faults: Central Mindoro Fault, Aglubang River Fault, and Batangas Bay Fault System) bound the western part of the study area. On the other hand, a series of almost parallel NE-trending left-lateral and normal faults (F2 Faults: Macolod Corridor, North Verde Fault System, Central Verde Fault System, South Verde Fault, and Northeast Mindoro Fault System) approach the F1 faults from the northeast. The distribution of the 1994 and 2017 earthquakes suggests that the possible rupture areas for these events are the Aglubang River Fault and the southwest Batangas Bay Fault System, respectively. These two traces appear to be connected and a restraining bend is suggested to have acted as a rupture barrier between the two events. Coulomb stress transfer modeling showed that the 1994 earthquake promoted the failure of the 2017 earthquake. Furthermore, results from the stress transfer models showed stress increase on the F1 faults (Batangas Bay Fault System and Central Mindoro Fault) and the northern F2 faults (North Verde Fault System and Central Verde Fault System). The newly recognized faults redefine the knowledge of the neotectonic structure of the area but are still consistent with the ongoing east-west extension in southern Luzon and the overall extension in northern Central Philippines. These faults pose seismic hazards, and more studies are needed to determine their seismogenic potential.
    The authors would like to thank the National Mapping and Resource Information Authority (NAMRIA) for generously providing the multibeam bathymetry data and the Department of Science and Technology - Philippine Institute of Volcanology and Seismology for providing the earthquake catalog. The research party and the ship crew of M/Y Panata of the University of the Philippines Marine Science Institute is also thanked for their assistance in data collection during the research cruise in Verde Island Passage last July 2019. The authors are very much grateful to editor GR and reviewers YL and WF for providing valuable comments that greatly improved this manuscript. Topography data is from JAXA ALOS World 3D–30 m (AW3D30) DEM (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm) while global bathymetry is from the GEBCO_2020 grid (https://www.gebco.net/data_and_products/gridded_bathymetry_data/). Focal mechanism solutions were obtained from Harvard GCMT (https://www.globalcmt.org/).
  • Ground deformation analysis caused by post-2013 earthquake in Bohol, Philippines
    Bauzon, Ma. Divina Angela I.; Reyes, Rosalie B.; Blanco, Ariel C.; Siringan, Fernando P. (Springer Science and Business Media LLC, 2022-08-16)
    After the 2013 Mw 7.2 earthquake that occurred in Bohol, the shoreline specifically in Loon and Maribojoc was observed to shift seaward due to ground uplift. This study analyzes the post-earthquake shoreline movement, specifically a 12 km coastal strip in Loon and Maribojoc, and ground deformation of the West Bohol area through Sentinel-1 image processing techniques. From October 2014 to April 2018, the DSAS linear regression shoreline rates were − 4.36 m/yr in Loon and − 1.69 m/yr in Maribojoc, indicative of a landward movement of 91.4% and 88.8% of shoreline transects in Loon and Maribojoc, respectively. PSInSAR revealed varying rates of VLM in the study area from October 2014 to December 2018 such that Loon and Maribojoc exhibit a subsidence rate of − 2 to − 8 mm/yr. The correlation between the shoreline retreat and the land subsidence in the study area is 87%, indicating a possible elastic rebound after the earthquake. The portion of Tagbilaran City on its northern side exhibits land subsidence of − 2 to − 6 mm/yr while its southern side exhibits land uplift of 0–2 mm/yr. The relative sea level fall from TGSL measurements indicates an uplift in the location of the tide gauge in Tagbilaran City.
  • Thumbnail Image
    Shallow structures, interactions, and recurrent vertical motions of active faults in Lingayen Gulf, Philippines
    Flores, Paul Caesar M.; Siringan, Fernando P.; Mateo, Zenon Richard P.; Marfito, Bryan J.; Sarmiento, Keanu Jershon S.; Abigania, Maria Isabel T.; Daag, Arturo S.; Maac-Aguilar, Yolanda (Elsevier, 2023-06-01)
    The surface trace of the East Zambales Fault (EZF) and its associated faults in the Lingayen Gulf have been previously mapped but no other characteristics were reported. This study utilized seismic reflection, multi-beam bathymetry, and side scan sonar to characterize the offshore EZF in terms of magnitudes of vertical displacement. Sequence stratigraphy and radiocarbon dates provided age constraints on the recurrence interval within the Holocene. The EZF extends for ∼ 57 km into the gulf, follows a north-northwest trend, and bounds the karstic terrane (west) and fluvio-deltaic deposits (east). Sinistral motion is indicated by: 1) normal and reverse drag geometries, 2) reversal in the sense of throw with depth, 3) flower structure, and 4) right-stepping and the uplift of a pressure ridge named Pudoc Bathymetric High. The Central Lingayen Gulf Fault (CLGF), to the east of EZF, follows the same trend. The Lingayen Gulf Transverse Fault (LGTF), oriented east–west, forms a flower structure with the CLGF. The EZF, CLGF, and LGTF combined form the Lingayen Gulf Fault System, which divides the gulf into five fault blocks where uplift and subsidence locally occurred. A paleo-delta at −60 m yielded an age of 6.8 kyBP, indicating it was formed during the first Holocene highstand. With natural compaction considered, fault-associated subsidence of 46–53 m may have occurred. The average Holocene vertical displacement is 2.1–2.2 m, which translates to a recurrence interval of 320–270 years for the fault system. The faults can likely generate earthquakes with magnitudes 7.5 (EZF), 6.7 (CLGF), and 6.6 (LGTF).
    This work was supported by grants to F. P. Siringan by the Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology Research and Development through the Mapping of Active Offshore Faults for Resilient Coasts Project; and the Department of Environment and Natural Resources – Biodiversity Management Bureau through the Coral Reef Visualization and Assessment - Deep Coral Mapping Project. We are thankful to Deo Carlo Llamas for the meaningful discussions about the current knowledge of the East Zambales Fault. We also thank the anonymous reviewers who provided significant insights for the improvement of this manuscript.