Journal Articles
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
Search Results
- Genomics and metabolomics-based assessment of the biosynthetic potential of the sponge-associated microorganism Streptomyces cacaoi strain R2A-843A from the PhilippinesMalto, Zabrina Bernice L.; Reyes, Joeriggo M.; Lo, Bernard Isaiah; Davis, Kevin Bossie S.; Concepcion, Gisela; Salvador-Reyes, Lilibeth A. (Philippine-American Academy of Science and Engineering, 2023-10-20)The biosynthetic machinery of the sponge-associated Streptomyces cacaoi strain R2A-843A was assessed using a combined genomics and metabolomics approach. Whole genome sequencing and molecular networking showed the high biosynthetic potential of this actinomycete. A significant proportion of the genome is dedicated to secondary metabolite production, with biosynthetic gene clusters for nonribosomal peptides, polyketides, and terpenes being the most represented. Seven cyclic pentapeptides, including a putative new analogue, and a glycosylated lanthipeptide were identified using HRMS and untargeted MS/MS analysis. To validate our genome and metabolome analysis, we undertook a mass spectrometry-guided purification and confirmed the production of the known peptides BE-18257A (1) and BE-18257B (2). The production of 1 and 2 and the growth of the microorganism were monitored for eight days. Compound 2 was produced at a higher concentration, starting at 48 h post-incubation. Both compounds were noncytotoxic against colorectal and breast cancer cell lines.
- Total synthesis and bioactivity evaluation of hydrophobic microcionamide‐inspired peptidesInocentes, Carl Rogel V.; Salvador‐Reyes, Lilibeth A.; Villaraza, Aaron Joseph L. (Wiley, 2023-01)In this report, we describe the facile synthesis of four microcionamide-inspired peptides where the atypical 2-phenylethylenamine (2-PEA) functional group in the marine natural product, microcionamide A, was replaced with a similarly-aromatic but more easily incorporated tryptophan (Trp) residue. Compounds 1–4 were synthesized using a standard Fmoc-based solid-phase synthesis strategy followed by iodine-mediated on-resin cyclization for disulfide-bridged compounds 1–3. Compound 1 showed antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa, with minimum inhibitory concentrations (MICs) of 9.1 μM and 15 μM, respectively. The inactivity of alanine analogs 2–4 against these pathogens suggests that the N-terminal Val, the cyclic scaffold, the contiguous Ile residues, and consequently, the hydrophobicity of compound 1 are essential for antibacterial activity. Compound 1 also favorably exhibited minimal cytotoxicity against normal mammalian cell lines. In summary, we have synthesized an analog of microcionamide A where replacement of the 2-PEA moiety with a Trp residue retained the antibacterial activity and with favorably low cytotoxicity.