menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Through the boundaries: Environmental factors affecting reef benthic cover in marine protected areas in the Philippines
    Panga, Fleurdeliz M.; Anticamara, Jonathan A.; Quibilan, Miledel Christine C.; Atrigenio, Michael P.; Aliño, Porfirio M. (Frontiers Media SA, 2021-08-18)
    Philippine coral reefs have been on the decline since the 1970s, and this degradation has posed a risk to biodiversity, food security, and livelihood in the country. In an effort to arrest this degradation, marine protected areas (MPAs) were established across the country. MPAs are known to improve fish biomass, but their effect on live coral cover and other benthos is not yet well documented and understood. In this study, 28 MPAs across the Philippines were surveyed comparing benthic cover and indices between protected reefs and adjacent unprotected reefs. No consistent differences were found between reefs inside and outside MPAs through all the benthic categories and reef health indices considered that are indicative of protection effects or recovery within MPAs. However, there were notable site-specific differences in benthic cover across the study MPAs-suggesting that factors other than protection play important roles in influencing benthic cover inside and outside of MPAs. Storm frequency and proximity to rivers, as a proxy for siltation, were the strongest negative correlates to live coral cover. Also, high coastal population, a proxy for pollution, and occurrence of blast and poison fishing positively correlated with high dead coral cover. The lack of significant difference in benthic cover between reefs inside and outside MPAs suggests that protection does not necessarily guarantee immediate improvement in benthic condition. Correlations between benthic condition and storm frequency, siltation, and pollution suggest that it is necessary to augment MPAs with other management strategies that will address the multiple stressors that are usually indiscriminate of MPA boundaries. Supplementing long-term and systematic monitoring of benthic cover and biodiversity inside and outside of MPAs with data on other important environmental and human impact variables will help improve understanding of benthic cover and biodiversity dynamics inside and outside of MPA boundaries.
    We would like to thank RARE Philippines and USAID, in collaboration with the Marine Environment and Resources Foundation (MERF), for research funding, coordination, and support in the execution of this research. We would also like to thank the RARE Conservation Fellows and Local Government Units for logistical support and coordination on all of the MPAs studied. We would also like to thank the Fisheries team of the MSI Community Laboratory for the municipal profile data, and the MSI Physical Oceanography Laboratory for the storm frequency and relative exposure index used in the environmental correlation. We would also like to thank the rest of the MERF-RARE Team/MSI Community Ecology Laboratory who joined and supported the many months of data gathering, encoding, and data analysis.
  • Thumbnail Image
    Seafloor structures and static stress changes associated with two recent earthquakes in offshore southern Batangas, Philippines
    Sarmiento, Keanu Jershon S.; Aurelio, Mario A.; Flores, Paul Caesar M.; Carrillo, Anne Drew V.; Marfito, Bryan J.; Abigania, Maria Isabel T.; Daag, Arturo S.; Siringan, Fernando P. (Frontiers Media SA, 2022-02-02)
    The 1994 Mw 7.1 Mindoro Earthquake and the 2017 Mw 5.9 Batangas Earthquake Sequence both occurred in offshore southern Batangas and devastated southern Luzon and Mindoro. These earthquakes exhibited NW-striking right-lateral slip in an area presumably defined by a WNW-striking left-lateral fault, therefore implying the existence of previously unmapped offshore faults. High resolution multibeam bathymetry grid and subbottom profiles revealed a conjugate strike-slip fault system under an approximately EW-directed extension. NW-striking right-lateral faults (F1 Faults: Central Mindoro Fault, Aglubang River Fault, and Batangas Bay Fault System) bound the western part of the study area. On the other hand, a series of almost parallel NE-trending left-lateral and normal faults (F2 Faults: Macolod Corridor, North Verde Fault System, Central Verde Fault System, South Verde Fault, and Northeast Mindoro Fault System) approach the F1 faults from the northeast. The distribution of the 1994 and 2017 earthquakes suggests that the possible rupture areas for these events are the Aglubang River Fault and the southwest Batangas Bay Fault System, respectively. These two traces appear to be connected and a restraining bend is suggested to have acted as a rupture barrier between the two events. Coulomb stress transfer modeling showed that the 1994 earthquake promoted the failure of the 2017 earthquake. Furthermore, results from the stress transfer models showed stress increase on the F1 faults (Batangas Bay Fault System and Central Mindoro Fault) and the northern F2 faults (North Verde Fault System and Central Verde Fault System). The newly recognized faults redefine the knowledge of the neotectonic structure of the area but are still consistent with the ongoing east-west extension in southern Luzon and the overall extension in northern Central Philippines. These faults pose seismic hazards, and more studies are needed to determine their seismogenic potential.
    The authors would like to thank the National Mapping and Resource Information Authority (NAMRIA) for generously providing the multibeam bathymetry data and the Department of Science and Technology - Philippine Institute of Volcanology and Seismology for providing the earthquake catalog. The research party and the ship crew of M/Y Panata of the University of the Philippines Marine Science Institute is also thanked for their assistance in data collection during the research cruise in Verde Island Passage last July 2019. The authors are very much grateful to editor GR and reviewers YL and WF for providing valuable comments that greatly improved this manuscript. Topography data is from JAXA ALOS World 3D–30 m (AW3D30) DEM (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm) while global bathymetry is from the GEBCO_2020 grid (https://www.gebco.net/data_and_products/gridded_bathymetry_data/). Focal mechanism solutions were obtained from Harvard GCMT (https://www.globalcmt.org/).
  • Thumbnail Image
    Complex patterns of genetic structure in the sea cucumber Holothuria (Metriatyla) scabra from the Philippines: implications for aquaculture and fishery management
    Lal, Monal M.; Macahig, Deo A. S.; Juinio-Meñez, Marie A.; Altamirano, Jon P.; Noran-Baylon, Roselyn; de la Torre-de la Cruz, Margarita; Villamor, Janine L.; Gacura, Jonh Rey L.; Uy, Wilfredo H.; Mira-Honghong, Hanzel; Southgate, Paul C.; Ravago-Gotanco, Rachel (Frontiers Media SA, 2024-06-04)
    The sandfish Holothuria (Metriatyla) scabra, is a high-value tropical sea cucumber harvested from wild stocks for over four centuries in multi-species fisheries across its Indo-Pacific distribution, for the global bêche-de-mer (BDM) trade. Within Southeast Asia, the Philippines is an important centre of the BDM trade, however overharvesting and largely open fishery management have resulted in declining catch volumes. Sandfish mariculture has been developed to supplement BDM supply and assist restocking efforts; however, it is heavily reliant on wild populations for broodstock supply. Consequently, to inform fishery, mariculture, germplasm and translocation management policies for both wild and captive resources, a high-resolution genomic audit of 16 wild sandfish populations was conducted, employing a proven genotyping-by-sequencing approach for this species (DArTseq). Genomic data (8,266 selectively-neutral and 117 putatively-adaptive SNPs) were used to assess fine-scale genetic structure, diversity, relatedness, population connectivity and local adaptation at both broad (biogeographic region) and local (within-biogeographic region) scales. An independent hydrodynamic particle dispersal model was also used to assess population connectivity. The overall pattern of population differentiation at the country level for H. scabra in the Philippines is complex, with nine genetic stocks and respective management units delineated across 5 biogeographic regions: (1) Celebes Sea, (2) North and (3) South Philippine Seas, (4) South China and Internal Seas and (5) Sulu Sea. Genetic connectivity is highest within proximate marine biogeographic regions (mean Fst=0.016), with greater separation evident between geographically distant sites (Fst range=0.041–0.045). Signatures of local adaptation were detected among six biogeographic regions, with genetic bottlenecks at 5 sites, particularly within historically heavily-exploited locations in the western and central Philippines. Genetic structure is influenced by geographic distance, larval dispersal capacity, species-specific larval development and settlement attributes, variable ocean current-mediated gene flow, source and sink location geography and habitat heterogeneity across the archipelago. Data reported here will inform accurate and sustainable fishery regulation, conservation of genetic diversity, direct broodstock sourcing for mariculture and guide restocking interventions across the Philippines.
  • Thumbnail Image
    Genomics and metabolomics-based assessment of the biosynthetic potential of the sponge-associated microorganism Streptomyces cacaoi strain R2A-843A from the Philippines
    Malto, Zabrina Bernice L.; Reyes, Joeriggo M.; Lo, Bernard Isaiah; Davis, Kevin Bossie S.; Concepcion, Gisela; Salvador-Reyes, Lilibeth A. (Philippine-American Academy of Science and Engineering, 2023-10-20)
    The biosynthetic machinery of the sponge-associated Streptomyces cacaoi strain R2A-843A was assessed using a combined genomics and metabolomics approach. Whole genome sequencing and molecular networking showed the high biosynthetic potential of this actinomycete. A significant proportion of the genome is dedicated to secondary metabolite production, with biosynthetic gene clusters for nonribosomal peptides, polyketides, and terpenes being the most represented. Seven cyclic pentapeptides, including a putative new analogue, and a glycosylated lanthipeptide were identified using HRMS and untargeted MS/MS analysis. To validate our genome and metabolome analysis, we undertook a mass spectrometry-guided purification and confirmed the production of the known peptides BE-18257A (1) and BE-18257B (2). The production of 1 and 2 and the growth of the microorganism were monitored for eight days. Compound 2 was produced at a higher concentration, starting at 48 h post-incubation. Both compounds were noncytotoxic against colorectal and breast cancer cell lines.
    The authors acknowledge funding support from the Department of Science and Technology - Philippine Council for Health Research and Development through the Discovery and Development of Health Products - Marine Component Program. Genome sequencing was made possible through the CHEDPCARI IHITM63 Project. We thank Ms. Shalice R. SusanaGuevarra for conducting the bioactivity assay. This work was done under the supervision of the Bureau of Fisheries and Aquatic Resources under Gratuitous Permit No. FBP-0035-10. This is MSI Contribution No. 501.
  • Thumbnail Image
    Co-occurrence of a marine heatwave and a reported tomato jellyfish (Crambione mastigophora Maas, 1903) bloom in March 2020 at El Nido, Palawan, Philippines
    Quilestino-Olario, Raven; Concolis, Brenna Mei M.; Atup, Dale Patrick D.; Cortes, Aiza; Yñiguez, Aletta T.; Edullantes, Brisneve (The Plankton Society of Japan/The Japanese Association of Benthology, 2023-05-31)
    Globally, observations on marine species during marine heatwaves (MHWs) help outline the scope of the MHW’s possible biological effects. In line with this effort, this paper presents a 2020 MHW that coincided with a reported ‘tomato jellyfish’ (Crambione mastigophora Maas, 1903) bloom on 23 March 2020 in the Corong-Corong Bay of Palawan, Philippines. Detecting a moderate MHW from 21 March to 04 April 2020, the analysis of sea surface temperatures revealed that most areas surrounding the bloom site attained their peak positive anomalies on the same day as the reported bloom. Certain physical mechanisms present in the first quarter of 2020 may have played a role in the occurrence of both events: the presence of cyclonic eddies and parallel monsoonal winds alongshore can induce upwelling which promotes biological productivity in surface waters, while the observed weakening of winds have been associated with anomalous warming of the sea surface. Further studies are still highly recommended to determine the exact causes of the jellyfish bloom and what conditions make it more likely to happen during MHWs. However, if the C. mastigophora is hypothetically able to continually bloom amidst warming temperatures, the increasing trend of MHW frequency and intensity in the West Philippine Sea (where the reported bloom site is situated) may consequently yield more future co-occurrences. This paper aims to hopefully contribute to the existing knowledge of possible biological impacts associated with extreme marine events, especially in the Philippine context where both jellyfish blooms and MHWs are understudied.
    The authors would like to express sincere gratitude to the anonymous reviewers whose comments and suggestions helped improve and clarify this manuscript. The authors would also like to thank Mr. Alimar Amor for his permission on the still photos in Figs 1c and 1d from his recorded jellyfish bloom video on 23 March 2020. This paper is also made through the funding of DOST̶ Philippine Council for Industry, Energy, and Emerging Technology Research and Development under the Survey of Heatwaves in the Philippine Seas project (DOST Project No. 9615).
  • Thumbnail Image
    Seaweed as a resilient food solution after a nuclear war
    Jehn, Florian Ulrich; Dingal, Farrah Jasmine; Mill, Aron; Harrison, Cheryl; Ilin, Ekaterina; Roleda, Michael Y.; James, Scott C.; Denkenberger, David (American Geophysical Union, 2024-01-09)
    Abrupt sunlight reduction scenarios such as a nuclear winter caused by the burning of cities in a nuclear war, an asteroid/comet impact or an eruption of a large volcano inject large amounts of particles in the atmosphere, which limit sunlight. This could decimate agriculture as it is practiced today. We therefore need resilient food sources for such an event. One promising candidate is seaweed, as it can grow quickly in a wide range of environmental conditions. To explore the feasibility of seaweed after nuclear war, we simulate the growth of seaweed on a global scale using an empirical model based on Gracilaria tikvahiae forced by nuclear winter climate simulations. We assess how quickly global seaweed production could be scaled to provide a significant fraction of global food demand. We find seaweed can be grown in tropical oceans, even after nuclear war. The simulated growth is high enough to allow a scale up to an equivalent of 45% of the global human food demand (spread among food, animal feed, and biofuels) in around 9–14 months, while only using a small fraction of the global ocean area. The main limiting factor being the speed at which new seaweed farms can be built. The results also show that the growth of seaweed increases with the severity of the nuclear war, as more nutrients become available due to increased vertical mixing. This means that seaweed has the potential to be a viable resilient food source for abrupt sunlight reduction scenarios.
  • Thumbnail Image
    Shallow structures, interactions, and recurrent vertical motions of active faults in Lingayen Gulf, Philippines
    Flores, Paul Caesar M.; Siringan, Fernando P.; Mateo, Zenon Richard P.; Marfito, Bryan J.; Sarmiento, Keanu Jershon S.; Abigania, Maria Isabel T.; Daag, Arturo S.; Maac-Aguilar, Yolanda (Elsevier, 2023-06-01)
    The surface trace of the East Zambales Fault (EZF) and its associated faults in the Lingayen Gulf have been previously mapped but no other characteristics were reported. This study utilized seismic reflection, multi-beam bathymetry, and side scan sonar to characterize the offshore EZF in terms of magnitudes of vertical displacement. Sequence stratigraphy and radiocarbon dates provided age constraints on the recurrence interval within the Holocene. The EZF extends for ∼ 57 km into the gulf, follows a north-northwest trend, and bounds the karstic terrane (west) and fluvio-deltaic deposits (east). Sinistral motion is indicated by: 1) normal and reverse drag geometries, 2) reversal in the sense of throw with depth, 3) flower structure, and 4) right-stepping and the uplift of a pressure ridge named Pudoc Bathymetric High. The Central Lingayen Gulf Fault (CLGF), to the east of EZF, follows the same trend. The Lingayen Gulf Transverse Fault (LGTF), oriented east–west, forms a flower structure with the CLGF. The EZF, CLGF, and LGTF combined form the Lingayen Gulf Fault System, which divides the gulf into five fault blocks where uplift and subsidence locally occurred. A paleo-delta at −60 m yielded an age of 6.8 kyBP, indicating it was formed during the first Holocene highstand. With natural compaction considered, fault-associated subsidence of 46–53 m may have occurred. The average Holocene vertical displacement is 2.1–2.2 m, which translates to a recurrence interval of 320–270 years for the fault system. The faults can likely generate earthquakes with magnitudes 7.5 (EZF), 6.7 (CLGF), and 6.6 (LGTF).
    This work was supported by grants to F. P. Siringan by the Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology Research and Development through the Mapping of Active Offshore Faults for Resilient Coasts Project; and the Department of Environment and Natural Resources – Biodiversity Management Bureau through the Coral Reef Visualization and Assessment - Deep Coral Mapping Project. We are thankful to Deo Carlo Llamas for the meaningful discussions about the current knowledge of the East Zambales Fault. We also thank the anonymous reviewers who provided significant insights for the improvement of this manuscript.
  • Thumbnail Image
    Survival and growth of coral recruits in varying group sizes
    Ligson, Charlon A.; Cabaitan, Patrick C.; Harrison, Peter L. (Elsevier, 2022-11)
    Coral larvae usually settle as solitary individuals but sometimes also in aggregations, especially when settlement sites are limited. Fusion of coral individuals can consist of different group sizes with varying numbers of adjacent coral spat. However, little is known about the performance of coral individuals in different group sizes, especially during the early post-settlement phase, where high mortality usually occurs. Here, we investigated the performance of Acropora verweyi juveniles in varying group sizes of fused coral spat. Specifically, we examined the survival and growth rate of coral individuals, with four group size levels: solitary spat, 2, 3–5, 6–9, and 10–28-spat group size, over 21 weeks post-settlement. The highest survival was detected in the 6–9 spat group size followed by the 3–5 and 10–28 group sizes, with lower survival in the 2-spat group size and solitary spat. Overall, 7.4% of the 338 coral individuals reared in ex-situ hatchery conditions survived up to the last monitoring at 21 weeks. At 15 weeks post-settlement, the mean surface areas of solitary and 2-spat group sizes were five- to eight-fold smaller than in larger fused coral individuals. However, there were no significant differences between the percent growth changes among the coral group sizes. The present study suggests that fused coral spat of larger group sizes can immediately gain size, but not necessarily have higher growth rates within the first 15 weeks post-settlement. Results also revealed that fusions of at least six A. verweyi spat had higher survival than small fused individuals and solitary spat, at least in the first few months after settlement. The advantage of such fusions, especially in larger group sizes, may offer an enhanced survival for coral spat during the critical period of early post-settlement. This outcome provides potential advantages for coral restoration using sexual production of larvae.
    We are grateful to all the staff and research assistants at the Bolinao Marine Laboratory, especially to D. dela Cruz, E. Gomez, R. Adolfo, K. Adolfo, and M. Ponce for logistical support. We also thank K. Cameron for comments on an earlier version of this manuscript. This study was funded by an Australian Centre for International Agricultural Research (ACIAR) grants FIS/2014/063 and FIS/2019/123 to PLH. We thank C. Barlow and A. Fleming from ACIAR for their project support.