Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
Search Results
- MPA-FishMApp – a citizen science app that simplifies monitoring of coral reef fish density and biomass in marine protected areasAbesamis, Rene; Balingit, Rodel; de Castro, Romulo; Aguila, Raphael Nelo; Cabiguin, Maryjune; Villagracia, Julius; Susmeña, Marynoll; Montemar, Mario Neil; Yocor, Antonio (National Fisheries Research and Development Institute, 2022-12)Monitoring changes in fish density and biomass inside marine protected areas (MPAs) through fish visual census (FVC) can determine if MPAs are achieving their goal of promoting fish population recovery. Simplified FVC methods have been developed for citizen scientists to enable them to monitor fish populations in MPAs. However, MPA monitoring programs led by local stakeholders remain rare and difficult to sustain due to technical barriers related to FVC data management. Here, we describe and evaluate a novel online app called MPA-FishMApp, which we developed to help stakeholders of MPAs that protect coral reefs in the Philippines efficiently store, analyze, and visualize FVC data. MPA-FishMApp is coupled to a simplified FVC method wherein the observer records only 21 reef fish species groups during surveys. The app provides a simple data entry interface, cloud storage, and algorithms to estimate fish density and biomass. Spatial and temporal trends in fish density and biomass can be instantaneously visualized in the app based on relative importance to fisheries. Field testing suggested that the MPA-FishMApp methodology (simplified FVC and app) is sensitive enough to detect qualitative patterns showing differences in density and biomass that may develop between MPAs and fished sites, especially in fishes that are highly important to fisheries. However, users must have sufficient training and experience in simplified FVC to produce reliable data. MPA-FishMApp may help reverse the lack of monitoring in MPAs across the Philippines and offers an accessible, transparent, and auditable venue for collaboration between citizen scientists and professional scientists.
- Mining small molecules from Teredinibacter turnerae strains isolated from Philippine TeredinidaeVillacorta, Jamaine B.; Rodriguez, Camille V.; Peran, Jacquelyn E.; Batucan, Jeremiah D.; Concepcion, Gisela; Salvador-Reyes, Lilibeth A.; Junio, Hiyas A. (MDPI, 2022-11-21)Endosymbiotic relationship has played a significant role in the evolution of marine species, allowing for the development of biochemical machinery for the synthesis of diverse metabolites. In this work, we explore the chemical space of exogenous compounds from shipworm endosymbionts using LC-MS-based metabolomics. Priority T. turnerae strains (1022X.S.1B.7A, 991H.S.0A.06B, 1675L.S.0A.01) that displayed antimicrobial activity, isolated from shipworms collected from several sites in the Philippines were cultured, and fractionated extracts were subjected for profiling using ultrahigh-performance liquid chromatography with high-resolution mass spectrometry quadrupole time-of-flight mass analyzer (UHPLC-HRMS QTOF). T. turnerae T7901 was used as a reference microorganism for dereplication analysis. Tandem MS data were analyzed through the Global Natural Products Social (GNPS) molecular networking, which resulted to 93 clusters with more than two nodes, leading to four putatively annotated clusters: lipids, lysophosphatidylethanolamines, cyclic dipeptides, and rhamnolipids. Additional clusters were also annotated through molecular networking with cross-reference to previous publications. Tartrolon D cluster with analogues, turnercyclamycins A and B; teredinibactin A, dechloroteredinibactin, and two other possible teredinibactin analogues; and oxylipin (E)-11-oxooctadec-12-enoic acid were putatively identified as described. Molecular networking also revealed two additional metabolite clusters, annotated as lyso-ornithine lipids and polyethers. Manual fragmentation analysis corroborated the putative identification generated from GNPS. However, some of the clusters remained unclassified due to the limited structural information on marine natural products in the public database. The result of this study, nonetheless, showed the diversity in the chemical space occupied by shipworm endosymbionts. This study also affirms the use of bioinformatics, molecular networking, and fragmentation mechanisms analysis as tools for the dereplication of high-throughput data to aid the prioritization of strains for further analysis.The research was completed under the supervision of the Department of Agriculture-Bureau of Fisheries and Aquatic Resources (DA-BFAR), Philippines in compliance with Prior Informed Consent (PIC) certificate requirements and all required legal instruments and regulatory issuances covering the conduct of the research. The authors would also like to acknowledge the Department of Science and Technology-funded Discovery and Development of Health Products Program (DOST-DDHP) for the LC-MS Facility of the Institute of Chemistry, University of the Philippines Diliman.
- Local tide and geoid corrections significantly improve coastal retracked Jason sea surface heights in the PhilippinesFlores, Paul Caesar; Reyes, Rosalie; Amedo-Repollo, Charina Lyn; Rediang, Abegail; Alfante, Rey Mark; Bauzon, Ma. Divina Angela; Pasaje, Nikki; Bringas, Dennis (Science and Technology Information Institute, 2022-11-08)Retracking algorithms increase the accuracy of coastal sea surface height (SSH) measurements. However, it is still important to validate these retracking estimates with tide gauge (SSHtg) observations. We downloaded the freely available Jason altimeter SSH processed using the XTRACK-ALES algorithm, then detided the SSH using different tide models. The first model is the default tidal correction based on Finite Element Solution 2014 (SSHfes), and the second model is the T_Tide harmonic analysis of the nearest tide gauge (SSHaltimeter). SSHfes showed a very poor correlation (< 0.31) and very high root mean square error (RMSE, > 29 cm). In contrast, SSHaltimeter generally showed a very high correlation (> 0.91) and low RMSE (< 17.4 cm). A further quality check based on the average and standard deviation of the difference between the SSH readings (SSHfes – SSHtg and SSHaltimeter – SSHtg) also showed the superior performance of SSHaltimeter,which scored < 9.3 and < 16.5 cm, respectively; compared to SSHfes, which scored < 9.3 cm and > 27 cm for the same parameters. The poor performance from the SSHfes likely comes from the complex bathymetry and coastal geomorphology of the country, which is not accounted for in the FES. The Philippines generally has a narrow shelf, and the FES tide corrections may be related to deep-water tides rather than the shallow-water tides observed from tide gauges. Despite the high correlation and agreement between the SSHaltimeter and SSHtg, the rate of sea level rise from the SSHaltimeter in some sites is more than twice the rate from SSHtg, which indicates the possible influence of the vertical land movement.This study was supported by grants to R.B. Reyes by the Department of Science and Technology–Philippine Council for Industry, Energy, and Emerging Technology Research and Development through the Coastal Sea Level Rise Philippines Project. We also thank the anonymous reviewers for their feedback on how to improve the manuscript.