menu.header.image.unacom.logo
 

Journal Articles

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 10 of 29
  • Contrasting reproductive strategies between stress-tolerant and competitive coral taxa
    Bonilla, K. G.; Guest, J. R.; Baria-Rodriguez, M. V. (Springer, 2023-04-19)
    Reproductive traits such as fecundity (i.e., the number of gametes produced) and the size and age of coral colonies at reproductive onset can vary in predictable ways among life history strategies. However, most studies on the onset of reproductive maturity in corals only report the presence or absence of oocytes with little known about variation in fecundity across size and age classes. This study aimed to determine the colony size and fecundity at the onset of reproductive maturity across size classes of two scleractinian corals with contrasting life history strategies, Acropora millepora (competitive) and Favites colemani (stress-tolerant). Colonies at a site in northwestern Philippines were sampled to determine the smallest colony size class with mature oocytes and to estimate fecundity across size classes. Histological slides were also prepared to verify the presence of mature gametes. Colonies were able to produce mature oocytes when they had attained colony diameters of 4.7 cm for A. millepora and 1.5 cm for F. colemani. A. millepora had lower fecundity, but larger oocytes compared to F. colemani. Although small colonies can contribute to the larval pool, the proportion of mature colonies increased for larger size classes, suggesting that larger colonies make a disproportionately greater contribution to population reproductive output. These findings contribute to our understanding of coral population dynamics, particularly in parameterizing population and demographic models for different coral life histories.
  • Variation in epibiont communities among restocked giant clam species (Cardiidae: Tridacninae) and across different habitat types
    de Guzman, Ian Joseph A.; Cabaitan, Patrick C.; Hoeksema, Bert W.; Sayco, Sherry Lyn G.; Conaco, Cecilia (Springer, 2023-07-07)
    Giant clam shells provide a solid substrate for various species of epibionts. Yet, it is not well known how epibiont communities vary among populations of different giant clam species and in giant clams restocked in different habitat types. Here, we examined differences in the epibiont communities of three species of giant clams with different shell morphology (Tridacna gigas, Tridacna derasa, and Hippopus hippopus), and characterized the epibiont communities on T. gigas from three different habitat types (sandy reef flat, seagrass bed, and coral reef). Tridacna gigas had higher species richness, abundance, and cover of epibionts compared to the other two species. Tridacna gigas in coral reef habitat also displayed higher species richness and cover of sessile epibionts, while the same species in the sandy reef flat had higher species richness and abundance of mobile epibionts. Epibiont communities were more variable across habitat types than among different giant clam species restocked in a similar area. Differences in abundance of Trochus sp., Pyramidella sp., and crustose coralline algae contributed to the variability in epibiont communities among the giant clam species and across habitats. A few taxa were observed only on specific giant clam species and sites. For instance, Diadema sp. and Echinometra sp. were found only on T. gigas, and Diadema sp. was present only in the sandy reef flat. Both the complexity of the giant clam shells and habitat type contribute to differences in associated epibiont communities. This further emphasizes the ecological importance of giant clams as habitats for other invertebrates.
  • Characteristics of marine heatwaves in the Philippines
    Edullantes, Brisneve; Concolis, Brenna Mei M.; Quilestino-Olario, Raven; Atup, Dale Patrick D.; Cortes, Aiza; Yñiguez, Aletta T. (Elsevier, 2023-09)
    Marine Heatwaves (MHWs) are prolonged, discrete, and anomalously warm events, which have recently gained global attention due to their far-reaching effects and reported impacts. Although intensive studies have been carried out at global and regional scales, these events remained understudied in the Philippines – a country with high marine biodiversity. The Philippines is highly vulnerable to the impacts of these extreme events as it lies in the western boundary of the Pacific that is considered as a hotspot for MHWs. The present study used multi-year climatic sea surface temperature (SST) record to detect MHWs in the Philippines. The detected events were then characterized using the standardized metrics. Linear trend analysis was conducted to determine the magnitude and direction of the change of the MHW metrics over time. Decadal trend revealed that MHWs in the Philippines significantly increased from seven MHWs in the 1980s to 37 MHWs in the last decade. Moreover, increased duration was remarkable in 2020 with 276 MHW days. MHW frequency and duration were increasing at a rate almost twice as its neighboring waters. Intensities did not significantly increase with time, but the highest SST anomaly is associated with El Niño Southern Oscillation. Furthermore, the eastern and western region of the Philippines is vulnerable to MHWs, but hotspots are mostly confined in the West Philippine Sea and western tropical Pacific. An in-depth investigation of the drivers of MHWs is recommended to understand the physical mechanisms of the development of these extreme thermal events in the Philippine seas. The findings have significant implications for coastal marine resource management, highlighting the need for adaptive management strategies and increased monitoring and research efforts to mitigate the impacts of MHWs on marine ecosystems and local economies in the Philippines.
  • Thumbnail Image
    The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community
    Klumpp, D.W.; Salita-Espinosa, J. S.; Fortes, M. D. (Elsevier, 1992-11)
    Biomass and production of epiphytic periphyton, and the abundance, distribution and grazing rate of epifauna were measured in tropical seagrass beds in the Philippines. Periphyton comprised mainly detritus, diatoms and filamentous algae (Polysiphonia sp. 1, Centroceras clavulatum (C. Agardh) Montagne, Ceramium gracillimum Harvey and Cladophora sp.). Mean biomass of periphyton was 0.16 mg ash-free dry weight (AFDW) cm−2 frond of Enhalus acoroides (L.f.) Royle and 0.24 mg AFDW cm−2 frond of Cymodocea serrulata (R. Br.) Aschers. and Magnus. Total periphyton biomass per unit area (m2) of seagrass bed varied between habitats because of differing densities of seagrass, and ranged from 598 to 1061 mg AFDW or (24–646 mg C). Maximum (midday, summer) in situ rates of photosynthesis and respiration by epiphytes colonising artificial seagrass material averaged 11.6 μg O2 cm−2 h−1 and 2.0 μg O2 cm−2 h−1, respectively. Daily net productivity was 14 μg C cm−2 frond. Productivity of epiphytes per area of seagrass bed varied with site (36–77 mg C m−2 day−1). Relative to biomass, these data show that epiphytes are highly productive, with turnover times of 6–8 days, compared with known values of 30–100 + days for tropical seagrass fronds. The epifaunal grazer community was dominated by a few species of gastropod molluscs (especially Strombus mutabilis Swainson and Cerithium tenellum (Sowerby)). Within habitats, numbers of grazers on particular seagrass species were directly related to their available surface. Three groups of grazers were identified: those occurring on fronds day and night (e.g. S. mutabilis); those foraging over sediment during the day and fronds at night (e.g. Cerithium tenellum); those mainly confined to sediments (e.g. Strombus urceus L.). All epifaunal grazers exhibited upward movement into the seagrass canopy at night. Grazing was non-selective, removing the periphyton, except for the unutilised encrusting coralline algae, in proportion to abundance. Epifaunal grazers consumed between 20 and 62% of periphyton net production and, as in temperate systems, must therefore play a major role in the trophic flux of this tropical seagrass community.
  • Thumbnail Image
    Genetic structure of giant clam (Tridacna derasa) populations from reefs in the Indo-Pacific
    Macaranas, J. M.; Ablan, C. A.; Pante, M. J. R.; Benzie, J. A. H.; Williams, S. T. (Springer, 1992-06)
    Large genetic differences were observed among the Great Barrier Reef (GBR), Fiji and Philippine populations of Tridacna derasa (Roding) sampled in 1989 and 1990 (Nei's unbiased genetic distance, D,=0.137 to 0.341). This result contrasted strongly with the low genetic distance (D=0.032) reported previously for the giant clam T. maxima over similar geographical scales. No significant genetic differentiation was observed among most populations from the GBR (mean D=0.007), consistent with the high gene exchange expected in this highly connected reef system. However, significant differentiation resulting from differences in the frequencies of less common alleles between the North-Central GBR and South GBR (Swain region) were observed. Historical isolation of blocks of the Central Indo-West Pacific from the GBR and present-day restrictions to gene exchange between the GBR, Fiji and the Philippines as a result of oceanographic current patterns, were thought to be responsible for the high degree of genetic differentiation of T. derasa populations. The relevance of these findings to clam mariculture and reef restocking are briefly discussed.
  • Thumbnail Image
    Status of giant clam resources of the Philippines
    Juinio, Marie Antoinette R.; Meñez, Lambert Anthony B.; Villanoy, Cesar L.; Gomez, Edgardo D. (Oxford University Press (OUP), 1989-11-01)
    Field surveys were conducted to determine distribution and abundance of giant dam resources in the Philippines. All seven known species of giant clams were recorded with Tridacna crocea, T. maxima and T. squamosa occurring the most frequently. The larger species T. derasa, T. gigas, Hippopus hippopus and H. porcellanus were relatively rare. The reduction of giant dam stocks in the Philippines is due to the uncontrolled exploitation of this resource which is primarily gathered for shellcraft and as supplementary diet in coastal villages.
  • Thumbnail Image
    The farmed Eucheuma species (Gigartinales, Rhodophyta) in Danajon Reef, Philippines: Carrageenan properties
    Azanza-Corrales, R.; Sa-a, P. (Springer, 1990-09)
    Six cultured ‘strains’ of Eucheuma denticulatum and E. alvarezii, from which stocks can be selected for the development of a Eucheuma ‘seedling bank’, were tested for their carrageenan quality from June to November 1988. Percent yield of all the varieties taken together was apparently higher in June, becoming lower in November (regression, r −0.785, probability, p ⩽ 0.001). Stepwise regression analysis was done to determine the existence of any relationship between any of the following parameters: gel strength, viscosity, sulfate content, month of sampling, and yield, whether taken individually or in combination. Results show variations of the yield with the month of sampling. ANOVA was performed to test whether there are differences in sulfate levels, gel strength, and viscosity between the Eucheuma alvarezii morphotypes. There was no significant difference between the green and the brown types.
  • Thumbnail Image
    Spatial variation in the benthic community structure of a coral reef system in the central Philippines: Highlighting hard coral, octocoral, and sponge assemblages
    Lalas, Jue Alef A.; Manzano, Geminne G.; Desabelle, Lee Arraby B.; Baria-Rodriguez, Maria Vanessa (Elsevier, 2023-07)
    Coral reefs are complex habitats that contain very high biodiversity and provide different ecosystem services. In the Coral Triangle, however, various major benthic components are still understudied. This can limit our understanding of coral reef community dynamics, especially in the presence of a changing climate coupled with local disturbances (e.g., decreased water quality). This study describes the benthic community structure of an ecologically and economically important coral reef system in the central Philippines through characterizing the assemblages of three major components (hard corals, octocorals, and sponges) among sites and stations with varying environmental conditions (i.e., exposure to monsoons, water quality levels). Results reveal significant variations in the mean percentage covers of hard corals, octocorals, and sponges at the site and station levels (ANOVA, p < 0.05), with hard corals dominating in Site 1, which is more exposed to the southwest monsoon, and Site 3, which is an embayed and unexposed site with low water quality, while soft corals dominated in Site 2, which is more exposed to the northeast monsoon. Multivariate analyses also revealed significant variations in the benthic community structure at different spatial scales (ANOSIM, p < 0.05). Interestingly, even stations within a site had significant variations in community structure, with different taxa being dominant. This study highlights the importance of conducting more detailed analyses of understudied taxa (i.e., octocorals and sponges) during coral reef surveys to improve our understanding of coral reef community dynamics that is very important for management.
  • Thumbnail Image
    Fish and benthic communities in an offshore and well-managed coral reef after bleaching disturbance in the Philippines
    Quimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle; Gomez, Elizabeth; Sayco, Sherry Lyn; Dumalagan, Edwin E.; Siringan, Fernando P.; Conaco, Cecilia; Cabaitan, Patrick C. (Springer, 2023-08-29)
    Climate change is perhaps the greatest threat to coral reefs worldwide. However, there is spatial variation in the extent and severity of this disturbance, with offshore and well-managed reefs presumed to be less vulnerable to anthropogenic disturbance. Here, fish and benthic communities at the offshore and well-managed reefs of Apo Reef Natural Park, Philippines, were examined during a bleaching disturbance in 2016 and reassessed 2 (2018) and 3 years (2019) after using scuba surveys. Results showed that benthic communities varied more strongly with year attributed to changes in the benthic cover of coral. These changes were influenced by site, with some sites experiencing coral loss of 41–48%, while other sites exhibited minimal changes. Site differences in coral loss may be associated with coral cover, with sites that had high coral cover prior to bleaching incurring larger loss of coral cover. Fish communities varied more with sites and was associated with differences in the predominant benthos. The stability of fish communities with year despite coral loss may be attributed to the minimal loss of coral cover at some sites. For sites that experienced high losses of coral cover, the presence of alternative and deeper habitats may have provided shelter and food for more mobile fishes maintaining taxonomic composition within sites. This study shows that bleaching disturbance circumvents effective management, but impacts are variable even at small (≤ 3 km) spatial scales. Benthic community composition and presence of alternative habitats potentially alleviate the negative impacts of bleaching on reef fish diversity and abundance.
  • Molecular-assisted taxonomic study on the Sargassum C.Agardh (Fucales, Phaeophyceae) in Northwestern Luzon, Philippines
    Santiañez, Wilfred John E.; Lastimoso, John Michael L.; Hoshino, Masakazu; Villafuerte, Brix Nester Q.; Kogame, Kazuhiro; Trono, Gavino C. (Museum National d'Histoire Naturelle, 2023-10-18)
    The diversity of the brown algal genus Sargassum C.Agardh in the Philippines is the highest in the tropical western Pacific Ocean. However, most studies on Philippine Sargassum are based on morphoanatomies and the assumption that the genus is very diverse in the country has never been tested based on molecular information. Considering that many Sargassum species are highly polymorphic and the recent advance on Sargassum systematics facilitated by molecular phylogenetic studies, we believe that the species of Sargassum from the Philippines should now be reassessed with the tools of molecular taxonomy. We present here the results of our molecular-assisted taxonomic studies on the Sargassum of the northern Philippines, particularly along the coasts of four coastal provinces in northwestern Luzon (i.e., Ilocos Norte, Ilocos Sur, La Union, and Pangasinan). We recognized three distinct species lineages, namely, Sargassum aquifolium (Turner) C.Agardh, Sargassum ilicifolium (Turner) C.Agardh, and Sargassum polycystum C.Agardh based on our molecular analyses of 74 specimens from our study areas. Our morphological observations on the range of characters of these species also suggest that several common Sargassum taxa in the Philippines have been misidentified. Particularly, specimens previously attributed to S. kushimotense Yendo should be referred as S. aquifolium while the widely distributed and highly plastic S. ilicifolium is often confused and identified in the Philippines under several names including S. crassifolium J.Agardh, S. cristaefolium C.Agardh, and S. turbinarioides Grunow. Taken together, our results suggest that Sargassum biodiversity in the Philippines may have been inflated by misidentifications, and, that species diversity is actually much lower than initially thought.