menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 10 of 32
  • Dissolved and particulate carbon export from a tropical mangrove‐dominated riverine system
    Ray, Raghab; Miyajima, Toshihiro; Watanabe, Atsushi; Yoshikai, Masaya; Ferrera, Charissa M.; Orizar, Iris; Nakamura, Takashi; San Diego‐McGlone, Maria Lourdes; Herrera, Eugene C.; Nadaoka, Kazuo (Wiley, 2021-09-24)
    Despite being a major component in the mangrove carbon (blue carbon) budget, “outwelling” flux (or export to the sea) has gained little attention relative to other biogeochemical fluxes and reservoir carbon stock estimations. This study aims to estimate lateral exchange fluxes of dissolved and particulate organic carbon (DOC, POC) and dissolved inorganic carbon (DIC) from the watershed through a microtidal mangrove-dominated estuary to the coastal sea in Panay Island, Philippines. Along the estuarine transect, consistent addition of DOC, DIC, and POC at higher salinities were attributed to mangrove organic matter input. Upstream groundwater input (carbonate weathering) and downstream mangrove organic matter decomposition (possibly sulfate reduction) were the main controls on DIC. DOC corresponded to relatively pure mangrove sources in creek water, while POC was a mixture of detrital and algal organic matter. The mangrove system acted as net exporter of carbon to the sea in both dry and wet seasons. From short-term observations, outwelling fluxes of mangrove-derived DOC, DIC, and POC contributed 27–53%, 8–31%, and 42%, respectively, to their estuarine outflow. Unlike other studies, such low percentage for DIC might result from other external nonmangrove input (e.g., watershed carbonate weathering). Overall estuarine carbon flux was dominated by DIC (90–95%) with only minor contribution from DOC. The approach utilized in this study to estimate lateral carbon flux specific to a small mangrove setting can be useful in delineating blue carbon budgets that avoid geographical and methodological biases.
    We are grateful to the Japan International Cooperation Agency (JICA) and Japan Science and Technology Agency (JST) through the Science and Technology Research Partnership for Sustainable Development Program (SATREPS) for financially supporting the Project “Comprehensive Assessment and Conservation of Blue Carbon Ecosystems and their Services in the Coral Triangle (BlueCARES).” We are indebted to Dr Gerd Gleixner and Steffen Ruehlow (MPI-Jena, Germany) for providing support in δ13DOC analyses, and Dr Naoko Morimoto for POM analyses. We sincerely thank Dr Kenji Ono for sharing fine root production data. We are thankful to Dr Ariel Blanco (Department of Geodetic Engineering, UP Diliman) for providing delineation of mangrove area and Dr. Enrico C. Paringit, program leader of Phil-LiDAR 1, for providing the LiDAR products for map preparation. We thank Jeffrey Munar, Jesus Abad, John Michael Aguilar, Dominic Bautista, Bryan C. Hernandez and Mr Tsuyoshi Kanda for their assistance during field surveys. We are grateful for the overall support given by the University of the Philippines, Diliman and Aklan State University to the project. Finally, we thank the Journal Editor, Associate Editor, and three reviewers for their valuable comments and corrections on the manuscript.
  • Thumbnail Image
    Microscopic stages of North Atlantic Laminaria digitata (Phaeophyceae) exhibit trait-dependent thermal adaptation along latitudes
    Schimpf, Nele M.; Liesner, Daniel; Franke, Kiara; Roleda, Michael Y.; Bartsch, Inka (Frontiers Media SA, 2022-06-17)
    Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southern-most population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata.
    We would like to thank A. Wagner for the sampling and clonal isolation of kelp material and technical assistance in the laboratory, C. Daniel for support with the image analysis, L. Foqueau for the SST data, C. Gauci for statistical advice and S. DeAmicis for supervision in this BSc Thesis.
  • Effect of the Intensified Sub‐Thermocline Eddy on strengthening the Mindanao undercurrent in 2019
    Azminuddin, Fuad; Lee, Jae Hak; Jeon, Dongchull; Shin, Chang‐Woong; Villanoy, Cesar; Lee, Seok; Min, Hong Sik; Kim, Dong Guk (American Geophysical Union, 2022-02)
    The northward-flowing Mindanao Undercurrent (MUC) was directly measured by acoustic Doppler current profilers from a subsurface mooring at about 8°N, 127°E during 2 years (November 2017–December 2019). Its depth covers a range from 400 m to deeper than 1,000 m with its core appearing at around 900 m. The mean velocity of MUC's core was approximately 5.8 cm s−1 with a maximum speed of about 47.6 cm s−1. The MUC was observed as a quasi-permanent current with strong intraseasonal variability (ISV) with a period of 70–80 days. Further analyses with an eddy-resolving circulation model output suggest that the ISV is closely related to sub-thermocline eddies (SEs). In this study, two types of SEs near the Philippine coast are disclosed: the westward propagating SE (SE-1) and the quasi-stational SE southeast of Mindanao Island (SE-2). The SE-1 has both cyclonic and anticyclonic polarities with the propagation speed of 7–8 cm s−1, while the SE-2 is an anticyclonic eddy that moves erratically within 4–8°N, 127–130°E with the mean translation speed of about 11 cm s−1. Even though the SE-1 plays an important role in modulating the MUC, our results show that the observed strong MUC event (May–July 2019) is evidently induced by the intensified SE-2 that moves northwestward. This study emphasizes that the SE-2 when intensified, receives more energy from the strengthened New Guinea Coastal Undercurrent and loses the energy northward along the Philippine coast by intensifying the MUC.
    This study was part of the project entitled “study on air–sea interaction and process of rapidly intensifying Typhoon in the northwestern Pacific” (PM61670) funded by the Ministry of Oceans and Fisheries, Rep. of Korea. This study was also partly supported by the project entitled “Influences of the Northwest Pacific circulation and climate variability on the Korean water changes and material cycle I—The role of Jeju warm current and its variability” (PEA0011) funded by Korea Institute of Ocean Science and Technology (KIOST). The mooring data used in this study were provided by KIOST and are available from the KIOST live access server (http://las.kiost.ac.kr/data_adcp/). The model data are freely available from Mercator Ocean (https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024).
  • Organic matter compositions and loadings in river sediments from humid tropical volcanic Luzon island of the Philippines
    Lin, Baozhi; Liu, Zhifei; Eglinton, Timothy I.; Blattmann, Thomas M.; Kandasamy, Selvaraj; Haghipour, Negar; Siringan, Fernando P. (American Geophysical Union, 2021-07)
    Tropical rivers deliver ∼60% of particulate organic carbon to the world ocean. However, compositions and loadings of sedimentary organic matter (OM) from tropical small mountainous rivers are largely unknown. Here, we provide an initial constrain on sources of sedimentary OM from 28 fluvial systems across Luzon in the Philippines by measuring total organic carbon (TOC), total nitrogen (TN), stable carbon isotope (δ13C) and radiocarbon activity of TOC (expressed as fraction modern—Fm), as well as grain size and mineral surface area (SA) of sediments. Results indicate that sediments in Luzon rivers contain both contemporary and 14C-depleted OM (Fm: 0.71–1.06, mean 0.97 ± 0.07) with a wide range of δ13C values (−28.3‰ to −17.7‰, −24.9 ± 2.2‰). This is attributed to the OM sources originated from modern surface soil and 14C-depleted subsoil and deep soil vegetated by C3 and C4 plants, with mean fraction of C3 plant at 80% ± 11%. Minor input from bedrock may also contribute to the 14C-depleted OM in sediments, accounting for 6% ± 6%. Sediments in most rivers are featured by low OC loadings (OC/SA ratio < 0.4 mg C m−2), owing either to a less OM input or intensive OM degradation. The estimated yields of particulate OC from Luzon vary between 3.2 and 3.7 t km−2 yr−1, which is higher than most tropical large rivers.
    We thank Peter B. Zamora and Yulong Zhao for assistance during the fieldwork sampling, Daniel Montluçon, Yanli Li and all members of Ion Beam Physics Laboratory at ETH for technical and laboratory assistance, and Bingbing Wei for his help during preparation of this manuscript. This work was supported by the National Natural Sciences Foundation of China (Grant Nos. 41530964 and 91528304), the Swiss National Science Foundation (200020_163162) and the fellowship of China Postdoctoral Science Foundation (2020M671198). BL thanks the China Scholarship Council (20170260239) for the support during her stay at ETH Zürich (Switzerland).
  • Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions
    Posadas, Niño; Baquiran, Jake Ivan P; Nada, Michael Angelou L; Kelly, Michelle; Conaco, Cecilia (Oxford University Press, 2021-07-03)
    The sponge-associated microbial community contributes to the overall health and adaptive capacity of the sponge holobiont. This community is regulated by the environment and the immune system of the host. However, little is known about the effect of environmental stress on the regulation of host immune functions and how this may, in turn, affect sponge–microbe interactions. In this study, we compared the bacterial diversity and immune repertoire of the demosponge, Neopetrosia compacta, and the calcareous sponge, Leucetta chagosensis, under varying levels of acidification and warming stress based on climate scenarios predicted for 2100. Neopetrosia compacta harbors a diverse microbial community and possesses a rich repertoire of scavenger receptors while L. chagosensis has a less diverse microbiome and an expanded range of pattern recognition receptors and immune response-related genes. Upon exposure to RCP 8.5 conditions, the microbiome composition and host transcriptome of N. compacta remained stable, which correlated with high survival (75%). In contrast, tissue necrosis and low survival (25%) of L. chagosensis was accompanied by microbial community shifts and downregulation of host immune-related pathways. Meta-analysis of microbiome diversity and immunological repertoire across poriferan classes further highlights the importance of host–microbe interactions in predicting the fate of sponges under future ocean conditions.
    We thank Francis Kenith Adolfo, Robert Valenzuela, and Ronald De Guzman for field and hatchery assistance and staff of the Bolinao Marine Laboratory for logistical support. This study was funded by the Department of Science and Technology Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (QMSR-MRRD-MEC-295-1449) to CC.
  • Zooxanthellae diversity and coral-symbiont associations in the Philippine archipelago: specificity and adaptability across thermal gradients
    Torres, Andrew F.; Valino, Darryl Anthony M.; Ravago-Gotanco, Rachel (Frontiers Media SA, 2021-10-20)
    Prolonged thermal stress and high levels of solar irradiance can disrupt the coral-algal symbiosis and cause bleaching and lowered overall fitness that lead to the likely death of the cnidarian host. Adaptive bleaching and acclimatization of corals, which posits bleaching as an opportunity for the coral host to switch its currently susceptible endosymbionts to more stress-tolerant taxa, offers hope for survival of reefs amid rapidly warming oceans. In this study, we explored the diversity and distribution of coral-zooxanthellae associations in the context of geospatial patterns of sea surface temperature (SST) and thermal anomalies across the Philippine archipelago. Thermal clusters based on annual sea surface temperature means and each site’s frequency of exposure to heat stress were described using three-decade (1985–2018) remotely sensed data. Haphazard sampling of 628 coral fragments was conducted in 14 reef sites over 3 years (2015–2018). Using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and sequencing of the zooxanthellae ITS2 region, we characterized endosymbiont diversity within four reef-building coral families across archipelagic thermal regimes. Consistency in dominant Symbiodiniaceae taxon was observed in Acropora spp., Porites spp., and Heliopora coerulea. In contrast, the family Pocilloporidae (Pocillopora spp., Seriatopora spp., and Stylophora pistillata) exhibited biogeographic variability in zooxanthellae composition, concordant with inferred occurrences of sustained thermal stress. Multivariate analyses identify two broad Pocilloporidae clusters that correspond with mean SST ranges and frequency of exposure to bleaching-level thermal stress which are largely supported by ANOSIM. Differences in zooxanthellae assemblages may reflect host-specific responses to ecological or environmental gradients across biogeographic regions. Such patterns of variability provide insight and support for the adaptability and potential resilience of coral communities in geographically and oceanographically complex regions, especially amidst the increasing severity of global and local-scale stressors.
    This paper is dedicated to the late Ronald D. Villanueva whose contribution to the project during its inception has been invaluable. The authors thank Patrick R. Pata and the reviewers LE and RC-T for their helpful comments and suggestions, and acknowledge Hazel O. Arceo, Cesar L. Villanoy, and Maria Lourdes San Diego-McGlone for their support of this study. Eileen Peñaflor and Mariana Soppa shared key knowledge in processing satellite products. Mikhael Tañedo, Romer Albino, Emmeline Jamodiong, David Siquioco, Lovely Heyres, Rhea Luciano, Joey Cabasan, Frederico Sabban, Geminne Manzano, Clairecynth Yu, Joyce Velos, Joseph Garcia, Robert Casauay, Maryjune Cabiguin, Macy A onuevo-Arcega, Ariel Loja, Jerome Genilan, Amabelle Go, Jamie Dichaves, Elaine Saniel, and Miledel Quibilan assisted with field collections. Supporting hard coral data were provided by the DOST-PCAARRD NACRE Program and the DENR-BMB WPS and SECURE Philippine Rise Projects. This is MSI contribution number 486.
  • Reproductive phenology and morphology of Macrocystis pyrifera (Laminariales, Ochrophyta) from southern New Zealand in relation to wave exposure1
    Leal, Pablo P.; Roleda, Michael Y.; Fernández, Pamela A.; Nitschke, Udo; Hurd, Catriona L. (Wiley, 2021-07-23)
    Macrocystis pyrifera is a major habitat forming kelp in coastal ecosystems of temperate regions of the northern and southern hemispheres. We investigated the seasonal occurrence of adult sporophytes, morphological characteristics, and reproductive phenology at two sites within a wave-protected harbour and two wave-exposed sites in southern New Zealand every 3–4 months between 2012 and 2013. Seasonality in reproduction was assessed via the number of sporophylls, the occurrence of sori on sporophylls, and non-sporophyllous laminae (fertile pneumatocyst-bearing blades and fertile apical scimitars), meiospore release, and germination. We found that M. pyrifera was present and reproductive year-round in three of the four sites, and patterns were similar for the wave-exposure conditions. Sori were found on pneumatocyst-bearing blades and apical scimitars in addition to the sporophylls, and viable meiospores were released from all three types of laminae. Morphological variations between sites with different wave exposure indicate that sporophytes from wave-protected sites have bigger blades and holdfasts and are longer than those from wave-exposed sites. We discuss the implications of these biological variables for the ecology of M. pyrifera inhabiting different wave exposure environments in southern New Zealand.
    Pablo P. Leal was supported by a scholarship from BECAS CHILE-ANID and by Programa Integral de Desarrollo de Acuicultura de Algas para Pescadores Artesanales (Etapa 4), funded by the Subsecretarıa de Economıa y Empresas de Menor Tamano (Convenio 2016). Michael Y. Roleda acknowledges the Philippine’s Department of Science and Technology (DOST) Balik Scientist Program for the fellowship. Udo Nitschke gratefully acknowledges support by Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA. Pamela A. Fernandez was supported by the Chilean National Commission for Scientific and Technological Research (ANID/FONDECYT; Postdoctoral grant 3170225 and grant 1180647) and ANID/Programa Basal (CeBiB, FB-0001). We are grateful to Rocio Suarez for assisting in field sampling.
  • Thumbnail Image
    Increased coral larval supply enhances recruitment for coral and fish habitat restoration
    Harrison, Peter L.; dela Cruz, Dexter W.; Cameron, Kerry A.; Cabaitan, Patrick C. (Frontiers Media SA, 2021-12-01)
    Loss of foundation reef-corals is eroding the viability of reef communities and ecosystem function in many regions globally. Coral populations are naturally resilient but when breeding corals decline, larval supply becomes limiting and natural recruitment is insufficient for maintaining or restoring depleted populations. Passive management approaches are important but in some regions they are proving inadequate for protecting reefs, therefore active additional intervention and effective coral restoration techniques are needed. Coral spawning events produce trillions of embryos that can be used for mass larval rearing and settlement on degraded but recoverable reef areas. We supplied 4.6 million Acropora tenuis larvae contained in fine mesh enclosures in situ on three degraded reef plots in the northwestern Philippines during a five day settlement period to initiate restoration. Initial mean larval settlement was very high (210.2 ± 86.4 spat per tile) on natural coral skeleton settlement tiles in the larval-enhanced plots, whereas no larvae settled on tiles in control plots. High mortality occurred during early post-settlement life stages as expected, however, juvenile coral survivorship stabilised once colonies had grown into visible-sized recruits on the reef by 10 months. Most recruits survived and grew rapidly, resulting in significantly increased rates of coral recruitment and density in larval-enhanced plots. After two years growth, mean colony size reached 11.1 ± 0.61 cm mean diameter, and colonies larger than 13 cm mean diameter were gravid and spawned, the fastest growth to reproductive size recorded for broadcast spawning corals. After three years, mean colony size reached 17 ± 1.7 cm mean diameter, with a mean density of 5.7 ± 1.25 colonies per m–2, and most colonies were sexually reproductive. Coral cover increased significantly in larval plots compared with control plots, primarily from A. tenuis recruitment and growth. Total production cost for each of the 220 colonies within the restored breeding population after three years was United States $17.80 per colony. A small but significant increase in fish abundance occurred in larval plots in 2018, with higher abundance of pomacentrids and corallivore chaetodontids coinciding with growth of A. tenuis colonies. In addition, innovative techniques for capturing coral spawn slicks and larval culture in pools in situ were successfully developed that can be scaled-up for mass production of larvae on reefs in future. These results confirm that enhancing larval supply significantly increases settlement and coral recruitment on reefs, enabling rapid re-establishment of breeding coral populations and enhancing fish abundance, even on degraded reef areas.
    We thank the Australian Centre for International Agricultural Research (ACIAR) for funding this research: grant ACIAR/FIS/2014/063 to PH, PC and J. Bennett. Thanks to ACIAR staff Chris Barlow, Ann Fleming, and Mai Alagcan for their ongoing support. Sincere thanks to the Galsim Family for use of Tanduyong Island as a field research base during the coral restoration fieldwork. We also thank staff and students at the Bolinao Marine Laboratory, Marine Science Institute, University of the Philippines, Diliman for their assistance with reef work: Elizabeth Gomez, Charlon Ligson, Rickdane Gomez and Fernando Castrence (including fish surveys), Marcos Ponce, Joey Cabasan, Sheldon Boco, Gabriel de Guzman, Albert Ponce, and Allan Abuan. We also thank Grant Cameron for field support and helping design, build and refine the prototype floating spawn catcher frames in 2016 and 2017.
  • Thumbnail Image
    Individual and interactive effects of ocean warming and acidification on adult Favites colemani
    Tañedo, Mikhael Clotilde S.; Villanueva, Ronald D.; Torres, Andrew F.; Ravago-Gotanco, Rachel; San Diego-McGlone, Maria Lourdes (Frontiers Media SA, 2021-09-09)
    Tropical coral reefs are threatened by local-scale stressors that are exacerbated by global ocean warming and acidification from the post-industrial increase of atmospheric CO2 levels. Despite their observed decline in the past four decades, little is known on how Philippine coral reefs will respond to ocean warming and acidification. This study explored individual and synergistic effects of present-day (pH 8.0, 28°C) and near-future (pH 7.7, 32°C) scenarios of ocean temperature and pH on the adult Favites colemani, a common massive reef-building coral in Bolinao-Anda, Philippines. Changes in seawater temperature drive the physiological responses of F. colemani, whereas changes in pH create an additive effect on survival, growth, and photosynthetic efficiency. Under near-future scenarios, F. colemani showed sustained photosynthetic competency despite the decline in growth rate and zooxanthellae density. F. colemani exhibited specificity with the Cladocopium clade C3u. This coral experienced lower growth rates but survived projected near-future ocean warming and acidification scenarios. Its pH-thermal stress threshold is possibly a consequence of acclimation and adaptation to local environmental conditions and past bleaching events. This research highlights the importance of examining the susceptibility and resilience of Philippine corals to climate-driven stressors for future conservation and restoration efforts in the changing ocean.
    We are grateful to the Marine Biogeochemistry Laboratory and Bolinao Marine Laboratory of the Marine Science Institute, University of the Philippines for the valuable logistical and laboratory support provided. We would also like to thank Drs. Haruko Kurihara, Atsushi Watanabe, and Toshihiro Miyajima for the design of the mass flow controller used in the experiments. This is UP-MSI contribution number 484.
  • Responses of Buluan Island turbid fringing reefs, southern Philippines to the 2016 thermal anomaly
    Valino, Darryl Anthony M.; Baria-Rodriguez, Maria Vanessa; Dizon, Romeo M.; Aliño, Porfirio M. (Elsevier B.V., 2021-03)
    Coral beaching due to increasing sea surface temperature causes a decline of global reef ecosystems. Turbidity and sedimentation are localized threats that may contribute to and exacerbate the impacts of coral bleaching. Some reports show coral communities thriving in turbid conditions are resilient to bleaching-related mortality events. In the Philippines, information on the effects of turbidity and elevated levels of light attenuation on bleaching in coral assemblages is generally lacking. This study describes the response to coral bleaching of a turbid reef in Buluan Island Marine Sanctuary (BIMS), southern Philippines. Coral cover and diversity showed no changes after the bleaching event. Coral community composition and abundance in some genera were affected but the majority showed either no significant change or recovery to pre-bleaching state even with high bleaching index values. The dominance and presence of bleaching-susceptible genera even after the 2016 global bleaching event suggest that turbidity experienced in BIMS might have reduced the impact of intense irradiance on the reef. Findings from this study indicate the potential existence of turbid resilient reefs across the Philippines and recommend that they be immediately identified and protected.