menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 10 of 212
  • The case for restoration of tropical coastal ecosystems
    Yap, Helen T. (Elsevier BV, 2000-01)
    At no time have humans so altered their natural environment than the present. Marine ecosystems have not been spared, and the degradation of coastal habitats has reached severe proportions in many parts of the world. The mere setting aside of areas for protection may not be enough to ensure adequate production and provision of services for a growing global human population. Hence, the active restoration of habitats, in addition to protection and preservation, is probably the more desirable conservation strategy. Accumulated experience over several decades has demonstrated that the rehabilitation or even restoration of damaged coastal ecosystems is feasible. However, the degree of difficulty and expense involved vary, with coral reefs being the most complicated habitats to restore, followed by seagrass beds and then mangrove forests. In ecosystem restoration, a comprehensive strategy based on sound biological and ecological principles, and proven techniques must be developed. A concrete, achievable goal must be articulated. Because of the dynamic nature of ecosystems, and the inability to accurately predict pathways of succession after a community is established through artificial means, subsequent modifications to a project must proceed within a flexible framework of adaptive management. Finally, for restoration efforts to be successful, local communities must participate actively in cooperation with local governments in accordance with the principle of co-management.
  • Thumbnail Image
    Short‐term responses of coral reef microphytobenthic communities to inorganic nutrient loading
    Dizon, Romeo M.; Yap, Helen T. (Wiley, 1999-07)
    The responses of coral reef flat microphytobenthos to short-term exposure to elevated levels of inorganic nitrogen (N) and phosphorus (P) were investigated in 1994 and 1995. Sand samples collected from the reef flat were maintained over 7 d in triplicate cultures with N-enriched (100 µM NO3), P-enriched (10 µM PO4), and ambient seawater. A fourth experiment used a treatment of combined N and P enrichment. The sediment samples were assessed for chlorophyll a (Chl a) content and photosynthesis-irradiance (P-I) responses. P-I curves, constructed from area-and Chl a-specific metabolic rates, showed consistently higher maximal rates in the nutrient enriched samples. Sediments exposed to enhanced levels of N exhibited the highest Chl a content while both N- and P-enriched samples showed increased photosynthetic yield. Very little depletion of nutrients in the water column was detected over time in the batch cultures except in the N:P-enriched treatments where nutrient values dropped to near-ambient levels. Results from these experiments point to N and P colimitation in tropical carbonate sediments.
  • Predicting fish kills and toxic blooms in an intensive mariculture site in the Philippines using a machine learning model
    Yñiguez, Aletta T.; Ottong, Zheina J. (Elsevier BV, 2020-03)
    Harmful algal blooms (HABs) that produce toxins and those that lead to fish kills are global problems that appear to be increasing in frequency and expanding in area. One way to help mitigate their impacts on people's health and livelihoods is to develop early-warning systems. Models to predict and manage HABs typically make use of complex multi-model structures incorporating satellite imagery and frequent monitoring data with different levels of detail into hydrodynamic models. These relatively more sophisticated methods are not necessarily applicable in countries like the Philippines. Empirical statistical models can be simpler alternatives that have also been successful for HAB forecasting of toxic blooms. Here, we present the use of the random forest, a machine learning algorithm, to develop an early-warning system for the prediction of two different types of HABs: fish kill and toxic bloom occurrences in Bolinao-Anda, Philippines, using data that can be obtained from in situ sensors. This site features intensive and extensive mariculture activities, as well as a long history of HABs. Data on temperature, salinity, dissolved oxygen, pH and chlorophyll from 2015 to 2017 were analyzed together with shellfish ban and fish kill occurrences. The random forest algorithm performed well: the fish kill and toxic bloom models were 96.1% and 97.8% accurate in predicting fish kill and shellfish ban occurrences, respectively. For both models, the most important predictive variable was a decrease in dissolved oxygen. Fish kills were more likely during higher salinity and temperature levels, whereas the toxic blooms occurred more at relatively lower salinity and higher chlorophyll conditions. This demonstrates a step towards integrating information from data that can be obtained through real-time sensors into a an early-warning system for two different types of HABs. Further testing of these models through times and different areas are recommended.
  • Thumbnail Image
    Differentiating two closely related Alexandrium species using comparative quantitative proteomics
    Subong, Bryan John J.; Lluisma, Arturo O.; Azanza, Rhodora V.; Salvador-Reyes, Lilibeth A. (MDPI AG, 2020-12-23)
    Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis. The complementary proteomics approach provided insights into the biochemistry of these two closely related HAB-causing organisms. The identified proteins are potential biomarkers for organismal toxicity and could be explored for environmental monitoring.
  • Thumbnail Image
    Variability and potential of seaweeds as ingredients of ruminant diets: An in vitro study
    de la Moneda, Ana; Carro, Maria Dolores; Weisbjerg, Martin R.; Roleda, Michael Y.; Lind, Vibeke; Novoa-Garrido, Margarita; Molina-Alcaide, Eduarda (MDPI AG, 2019-10-22)
    This study was designed to analyze the chemical composition and in vitro rumen fermentation of eight seaweed species (Brown: Alaria esculenta, Laminaria digitata, Pelvetia canaliculata, Saccharina latissima; Red: Mastocarpus stellatus, Palmaria palmata and Porphyra sp.; Green: Cladophora rupestris) collected in Norway during spring and autumn. Moreover, the in vitro ruminal fermentation of seventeen diets composed of 1:1 oat hay: concentrate, without (control diet) or including seaweeds was studied. The ash and N contents were greater (p < 0.001) in seaweeds collected during spring than in autumn, but autumn-seaweeds had greater total extractable polyphenols. Nitrogen in red and green seaweeds was greater than 2.20 and in brown seaweeds, it was lower than 1.92 g/kg DM. Degradability after 24 h of fermentation was greater in spring seaweeds than in autumn, with Palmaria palmata showing the greatest value and Pelvetia canaliculata the lowest. Seaweeds differed in their fermentation pattern, and autumn Alaria esculenta, Laminaria digitata, Saccharina latissima and Palmaria palmata were similar to high-starch feeds. The inclusion of seaweeds in the concentrate of a diet up to 200 g/kg concentrate produced only subtle effects on in vitro ruminal fermentation.
  • Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts
    Hallegraeff, Gustaaf M.; Anderson, Donald M.; Belin, Catherine; Bottein, Marie-Yasmine Dechraoui; Bresnan, Eileen; Chinain, Mireille; Enevoldsen, Henrik; Iwataki, Mitsunori; Karlson, Bengt; McKenzie, Cynthia H.; Sunesen, Inés; Pitcher, Grant C.; Provoost, Pieter; Richardson, Anthony; Schweibold, Laura; Tester, Patricia A.; Trainer, Vera L.; Yñiguez, Aletta T.; Zingone, Adriana (Springer, 2021-06-08)
    Global trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985–2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort. Varying and contrasting regional trends were driven by differences in bloom species, type and emergent impacts. Our findings suggest that intensified monitoring efforts associated with increased aquaculture production are responsible for the perceived increase in harmful algae events and that there is no empirical support for broad statements regarding increasing global trends. Instead, trends need to be considered regionally and at the species level.
  • Quantifying vertical land motion at tide gauge sites using permanent scatterer interferometric synthetic aperture radar and global navigation satellite system solutions
    Reyes, Rosalie; Bauzon, Ma. Divina Angela; Pasaje, Nikki Alen; Alfante, Rey Mark; De Lara, Pocholo Miguel; Ordillano, Marion; Flores, Paul Caesar; Rediang, Abegail; Nota, Patrick Anthony; Siringan, Fernando; Blanco, Ariel; Bringas, Dennis (Springer, 2022-01-29)
    One of the consequences of climate change is sea level rise (SLR). Near the coast SLR varies at different locations due to the contributions from regional/local climatic and non-climatic factors. Vertical land motion (VLM) can affect the accuracy of sea level observations from tide gauges (TG) that may exacerbate coastal area inundation/flooding. This study investigated the viability of Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to quantify the rate of VLM at the TG sites. Measurements from TG co-located GNSS receivers provide the actual VLM rates and ground truth for PSInSAR-derived rates. Based on the results from the 9 study sites, almost all except one are subsiding. Both PSInSAR and GNSS solutions showed the same trend with rates that correlate at 0.89. Analysis from 20 Active GNSS stations showed 95% of the sites are undergoing land subsidence. This should be a cause of concern for communities near the coastal areas.
  • A unique reproductive strategy in the mushroom coral Fungia fungites
    Eyal-Shaham, Lee; Eyal, Gal; Ben-Zvi, Or; Sakai, Kazuhiko; Harii, Saki; Sinniger, Frederic; Hirose, Mamiko; Cabaitan, Patrick; Bronstein, Omri; Feldman, Bar; Shlesinger, Tom; Levy, Oren; Loya, Yossi (Springer Science and Business Media LLC, 2020-09-30)
    The vast majority of scleractinian corals are either simultaneous hermaphrodites or gonochoric. Exceptions to these are rare. Nevertheless, species belonging to the family Fungiidae are known to exhibit a wide variety of reproductive strategies. We examined the reproductive ecology of the mushroom coral Fungia fungites in Okinawa. Our study was conducted as part of a long-term, wide-ranging project (2009–2010 and 2013–2017) which explored the unique reproductive strategies of several species belonging to the family Fungiidae. Here we report the co-occurrence of males, females, and hermaphrodite individuals in a long-term monitored population of the reproductively atypical brooder coral F. fungites within the family Fungiidae. F. fungites status as a single-polyped solitary coral, was used to perform manipulative experiments to determine the degree of dependence of an individual coral on its conspecific neighbors for reproduction, and examined whether a constant sperm supply is obligatory for the continuous production of planulae. Isolated females of F. fungites exhibited a distinctive reproductive strategy, expressed in continuously releasing planulae also in the absence of males. Observations conducted on a daily basis for 2.5 months (throughout the reproductive season of 2015) revealed that some of these individuals released planulae continuously, often between tens and hundreds every day. In an effort to explain this phenomenon, three hypotheses are discussed: (1) Self-fertilization; (2) Asexual production of planulae (i.e., parthenogenetic larvae); and (3) Extended storage of sperm. Finally, we emphasize the importance of continuous and long-term monitoring of studies of coral reproduction; through further genetic studies of coral populations representing a broad range of species and their larval origin.
  • Tolerance of Fucus vesiculosus exposed to diesel water-accommodated fraction (WAF) and degradation of hydrocarbons by the associated bacteria
    Ryzhik, Inna; Pugovkin, Dmitriy; Makarov, Mikhail; Roleda, Michael Y.; Basova, Larisa; Voskoboynikov, Grigoriy (Elsevier BV, 2019-11)
    The viability and physiological state of brown macroalgae Fucus vesiculosus and its associated epiphytic bacteria exposed to diesel water-accommodated fraction (WAF), as well as the capacity of this association to deplete petroleum hydrocarbons (HCs) were experimentally tested. After a 6-day exposure treatment, the algal-surface associated bacteria were identified as primarily hydrocarbon-oxidising bacteria (HOB), and the algal-HOB association was able to deplete petroleum hydrocarbons from the diesel WAF by 80%. The HOB density on the algal surface exposed to diesel WAF was 350% higher compared to the control (i.e. HOB density on the algal surface exposed to ambient seawater), which suggest that they actively proliferated in the presence of hydrocarbons and most likely consumed hydrocarbons as their primary organic substrate. Exposure to diesel WAF did not affect the metabolic activity of F. vesiculosus. Higher lipid peroxidation was observed in F. vesiculosus exposed to diesel WAF while catalase concentration decreased only during the first day of exposure. Results suggest F. vesiculosus is tolerant to oil pollution and the algal-HOB association can efficiently deplete petroleum hydrocarbons in oil-contaminated seas.
  • Are Pyrodinium blooms in the Southeast Asian region recurring and spreading? A view at the end of the millennium
    Azanza, Rhodora V.; Max Taylor, F. J. R. (Royal Swedish Academy of Sciences, 2001-09)
    Pyrodinium bahamense (var. compressum) has been the only dinoflagellate species that has caused major public health and economic problems in the Southeast Asian region for more than 2 decades now. It produces saxitoxin, a suite of toxins that cause Paralytic Shellfish Poisoning (PSP). A serious toxicological problem affecting many countries of the world, mild cases of this poisoning can occur within 30 minutes while in extreme cases, death through respiratory paralysis may occur within 2–24 hrs of ingestion of intoxicated shellfish. Blooms of the organism have been reported in Malaysia, Brunei Darussalam, the Philippines and Indonesia. The ASEAN-Canada Red Tide Network has recorded 31 blooms of the organism in 26 areas since 1976 when it first occurred in Sabah, Malaysia. As of 1999, the most hard hit country has been the Philippines which has the greatest number of areas affected (18) and highest number of Paralytic Shellfish Poisoning (PSP) cases (about 1995). Malaysia has reported a total of 609 PSP cases and 44 deaths while Brunei has recorded 14 PSP cases and no fatalities. Indonesia, on the other hand has a record of 427 PSP cases and 17 deaths. Studies on ecological/environmental impacts of these blooms have not been done in the region. Estimates of economic impacts have shown that the loss could be up to USD 300 000 day−1. Most of the data and information useful for understanding Pyrodinium bloom dynamics have come from harmful/toxic algal monitoring and research that have developed to different degrees in the various countries in the region affected by the organism's bloom. Regional collaborative research and monitoring efforts can help harmonize local data sets and ensure their quality and availability for comparative analysis and modeling. Temporal patterns of the blooms at local and regional scales and possible signals and trends in the occurrence/recurrence and spread of Pyrodinium blooms could be investigated. Existing descriptive and simple predictive models of Pyrodinium blooms can be improved and refined to help in the management of the wild harvest and aquaculture of shellfish in a region where the people are dependent on these resources for their daily food sustainance and livelihood.