Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
Search Results
- Bacterial community assembly, succession, and metabolic function during outdoor cultivation of Microchloropsis salinaMorris, Megan M.; Kimbrel, Jeffrey A.; Geng, Haifeng; Tran-Gyamfi, Mary Bao; Yu, Eizadora T.; Sale, Kenneth L.; Lane, Todd W.; Mayali, Xavier (American Society for Microbiology, 2022-08-31)
Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides.
IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.
- Sequence variation in the ribosomal DNA internal transcribed spacer of Tridacna croceaYu, Eizadora T.; Juinio-Meñez, Ma. Antonette; Monje, Virginia D. (Springer, 2000-11-01)DNA-based genetic markers are needed to augment existing allozyme markers in the assessment of genetic diversity of wild giant clam populations. The dearth of polymorphic mitochondrial DNA regions amplified from known universal polymerase chain reaction (PCR) primers has led us to search other regions of the genome for viable sources of DNA polymorphism. We have designed tridacnid-specific PCR primers for the amplification of internal transcribed spacer regions. Sequences of the first internal transcribed spacer segment (ITS-1) revealed very high polymorphism, showing 29% variation arising from base substitutions alone. Preliminary restriction analysis of the ITS regions using 8 restriction enzymes revealed cryptic changes in the DNA sequence. These mutations are promising as marker tools for differentiating geographically separated populations. Such variation in the ITS region can possibly be used for population genetic analysis.
- Physicochemical and biochemical characterization of collagen from Stichopus cf. horrens tissues for use as stimuli-responsive thin filmsSisican, Kim Marie D.; Torreno, Vicenzo Paolo M.; Yu, Eizadora T.; Conato, Marlon T. (American Chemical Society, 2023-09-20)The mutable collagenous tissue (MCT) of sea cucumber, with its ability to rapidly change its stiffness and extensibility in response to different environmental stress conditions, serves as inspiration for the design of new smart functional biomaterials. Collagen, extracted from the body wall of Stichopus cf. horrens, a species commonly found in the Philippines, was characterized for its suitability as stimuli-responsive films. Protein BLAST search showed the presence of sequences commonly found in type VII and IX collagen, suggesting that Stichopus horrens collagen is heterotypic. The maximum transition temperature recorded was 56.0 ± 2 °C, which is higher than those of other known sources of marine collagen. This suggests that S. horrens collagen has better thermal stability and durability. Collagen-based thin films were then prepared, and atomic force microscopy (AFM) imaging showed the visible collagen network comprising the films. The thin films were subjected to thermomechanical analysis with degradation starting at >175 °C. At 100–150 °C, the collagen-based films apparently lose their translucency due to the removal of moisture. Upon exposure to ambient temperature, instead of degrading, the films were able to revert to the original state due to the readsorption of moisture. This study is a demonstration of a smart biomaterial developed from S. cf. horrens collagen with potential applications in food, pharmaceutical, biomedical, and other collagen-based research.This research was funded by the Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development of the Department of Science and Technology (DOST-PCAARRD).
- Comprehensive metabolomics of Philippine Stichopus cf. horrens reveals diverse classes of valuable small molecules for biomedical applicationsTorreno, Vicenzo Paolo M.; Molino, Ralph John Emerson J.; Junio, Hiyas A.; Yu, Eizadora T. (Public Library of Science (PLoS), 2023-12-06)Stichopus cf. horrens is an economically important sea cucumber species in Southeast Asia due to their presumed nutritional and medicinal benefits. However, compared to other sea cucumbers such as Apostichopus japonicus, there are no biochemical studies on which compounds contribute to the purported bioactivities of S. cf. horrens. To address this, a high-throughput characterization of the global metabolite profile of the species was performed through LC-MS/MS experiments and utilizing open-access platforms such as GNPS, XCMS, and metaboAnalyst. Bioinformatics-based molecular networking and chemometrics revealed the abundance of phospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and phosphatidylserines (PSs) in the crude samples. Body wall extracts were observed to have higher levels of structural, diacylated PCs, while the viscera have higher relative abundance of single-tail PCs and PEs that could be involved in digestion via nutrient absorption and transport for sea cucumbers. PEs and sphingolipids could also be implicated in the ecological response and morphological transformations of S. cf. horrens in the presence of predatory and other environmental stress. Interestingly, terpenoid glycosides and saponins with reported anti-cancer benefits were significantly localized in the body wall. The sulfated alkanes and sterols present in S. cf. horrens bear similarity to known kairomones and other signaling molecules. All in all, the results provide a baseline metabolomic profile of S. cf. horrens that may further be used for comparative and exploratory studies and suggest the untapped potential of S. cf. horrens as a source of bioactive molecules.The authors would like to thank the Marine Invertebrate Ecology Laboratory under Dr. Marie Antonette Juinio-Meñez for the collection and maintenance of animals, and the Mass Spectrometry Facility at the Institute of Chemistry, UP Diliman for instrument use.