Journal Articles
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
2 results
Search Results
- Potential of sediment bacterial communities from Manila Bay (Philippines) to degrade low-density polyethylene (LDPE)Gomez, Norchel Corcia F.; Onda, Deo Florence L. (Springer, 2022-12-24)The persistence of plastics and its effects in different environments where they accumulate, particularly in coastal areas, is of serious concern. These plastics exhibit signs of degradation, possibly mediated by microorganisms. In this study, we investigated the potential of sediment microbial communities from Manila Bay, Philippines, which has a severe plastics problem, to degrade low-density polyethylene (LDPE). Plastics in selected sites were quantified and sediment samples from sites with the lowest and highest plastic accumulation were collected. These sediments were then introduced and incubated with LDPE in vitro for a period of 91 days. Fourier transform infrared spectroscopy detected the appearance of carbonyl and vinyl products on the plastic surface, indicating structural surface modifications attributed to polymer degradation. Communities attached to the plastics were profiled using high-throughput sequencing of the V4-V5 region of the 16S rRNA gene. Members of the phylum Proteobacteria dominated the plastic surface throughout the experiment. Several bacterial taxa associated with hydrocarbon degradation were also enriched, with some taxa positively correlating with the biodegradation indices, suggesting potential active roles in the partial biodegradation of plastics. Other taxa were also present, which might be consuming by-products or providing nourishment for other groups, indicating synergy in utilizing the plastic as the main carbon source and creation of a microenvironment within the plastics biofilm. This study showed that sediment microbes from Manila Bay may have naturally occurring microbial groups potentially capable of partially degrading plastics, supporting previous studies that the biodegradation potential for plastics is ubiquitously present in marine microbial assemblages.
- Accumulation and exposure classifications of plastics in the different coastal habitats in the western Philippine archipelagoGomez, Norchel Corcia F.; Cragg, Simon M.; Ghiglione, Jean-François; Onda, Deo Florence L. (Elsevier, 2023-11)Studies consistently ranked the Philippines as one of the top contributors of plastic wastes leaking into the ocean. However, most of these were based on probabilities and estimates due to lack of comprehensive ground-truth data, resulting also in the limited understanding of the contributing factors and drivers of local pollution. This makes it challenging to develop science-driven and locally-contextualized policies and interventions to mitigate the problem. Here, 56 sites from different coastal habitats in the western Philippine archipelago were surveyed for macroplastics standing stock, representing geographic regions with varying demography and economic activities. Clustering of sites revealed three potential influencing factors to plastic accumulation: population density, wind and oceanic transport, and habitat type. Notably, the amount and types of dominant plastics per geographic region varied significantly. Single-use plastics (food packaging and sachets) were the most abundant in sites adjacent to densely populated and highly urbanized areas (Manila Bay and eastern Palawan), while fishing-related materials dominated in less populated and fishing-dominated communities (western Palawan and Bolinao), suggesting the local industries significantly contributing to the mismanaged plastics in the surveyed sites. Meanwhile, isolated areas such as islands were characterized by the abundance of buoyant materials (drinking bottles and hygiene product containers), emphasizing the role of oceanic transport and strong connectivity in the oceans. Exposure assessment also identified single-use and fishing-related plastics to be of “high exposure (Type 4)” due to their high abundance and high occurrence. These increase their chances of encountering and interacting with organisms and habitats, thus, resulting into more potential harm. This study is the first comprehensive work done in western Philippines, and results will help contextualize local pollution, facilitating more effective management and policymaking.