Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
4 results
Search Results
- Changes in community structure and biomass of seagrass communities along gradients of siltation in SE AsiaTerrados, J.; Duarte, C. M.; Fortes, M. D.; Borum, J.; Agawin, N.; Bach, S.; Thampanya, U.; Kamp-Nielsen, L.; Kenworthy, W. J.; Geertz-Hansen, O.; Vermaat, J. (Elsevier BV, 1998-05)The patterns of change in species richness and biomass of Southeast Asian seagrass communities along siltation gradients were compared at different sites in The Philippines and Thailand. Seagrass species richness and community leaf biomass declined sharply when the silt and clay content of the sediment exceeded 15%. Syringodium isoetifolium and Cymodocea rotundata were present only in multispecific meadows, while Enhalus acoroides was the only species remaining in heavily silted sediments. The following ranking of species sensitivity to siltation is proposed (from the least to most sensitive): S. isoetifolium→C. rotundata→Thalassia hemprichii→Cymodocea serrulata→Halodule uninervis→Halophila ovalis→Enhalus acoroides. Positive correlations were found between species richness and both community leaf biomass and the leaf biomass of individual seagrass species. The increase in community biomass with increasing species richness was associated with a more even distribution of the leaf biomass among seagrass species. The relationships between percent silt and clay in the sediment and seagrass community leaf biomass and species richness provide useful dose–response relationships which can be used to set allowable or threshold siltation loads in SE Asian coastal waters, and indicate that species loss from seagrass meadows is an early warning of detrimental siltation loads.
- Relationship between sediment conditions and mangrove Rhizophora apiculata seedling growth and nutrient statusDuarte, C. M.; Geertz-Hansen, O.; Thampanya, U.; Terrados, J.; Fortes, M. D.; Kamp-Nielsen, L.; Borum, J.; Boromthanarath, S. (Inter-Research Science Center, 1998)The growth rate and nutritional status of Rhizophora apiculata seedlings were analyzed across mangrove stands with different sediment composition in The Philippines and Southern Thailand. Plant growth differed 10-fold and the production of new leaves, roots and branches varied between 50- and 100-fold across sites. Most (>60%) of the variance in mangrove growth rate across systems could be accounted for by differences in the nutrient concentration of the leaves, which was in turn related to the interstitial nutrient concentration and the silt plus clay content of the sediments. Nutrient-poor coarse sediments were characteristic of mangroves located in the mouths of rivers draining small watersheds, while sediments at the mouths of large rivers had high silt, clay, and nutrient contents, thus allowing the development of nutrient-sufficient, fast-growing R. apiculata seedlings. The growth of R. apiculata seedlings increased significantly when the plants grew adjacent to rivers draining areas >10 km2. The results provide evidence that growth of R. apiculata seedlings at the edge of the progressing mangrove forests is often nutrient limited, and that the extent of nutrient limitation depends on the delivery of silt and nutrients from the rivers. The coastal zones adjacent to small (<10 km2) drainage areas seem unsuitable to support adequate growth of R. apiculata seedlings, and afforestation programmes should, therefore, target mud flats adjacent to large rivers instead.
- The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass communityKlumpp, D.W.; Salita-Espinosa, J. S.; Fortes, M. D. (Elsevier, 1992-11)Biomass and production of epiphytic periphyton, and the abundance, distribution and grazing rate of epifauna were measured in tropical seagrass beds in the Philippines. Periphyton comprised mainly detritus, diatoms and filamentous algae (Polysiphonia sp. 1, Centroceras clavulatum (C. Agardh) Montagne, Ceramium gracillimum Harvey and Cladophora sp.). Mean biomass of periphyton was 0.16 mg ash-free dry weight (AFDW) cm−2 frond of Enhalus acoroides (L.f.) Royle and 0.24 mg AFDW cm−2 frond of Cymodocea serrulata (R. Br.) Aschers. and Magnus. Total periphyton biomass per unit area (m2) of seagrass bed varied between habitats because of differing densities of seagrass, and ranged from 598 to 1061 mg AFDW or (24–646 mg C). Maximum (midday, summer) in situ rates of photosynthesis and respiration by epiphytes colonising artificial seagrass material averaged 11.6 μg O2 cm−2 h−1 and 2.0 μg O2 cm−2 h−1, respectively. Daily net productivity was 14 μg C cm−2 frond. Productivity of epiphytes per area of seagrass bed varied with site (36–77 mg C m−2 day−1). Relative to biomass, these data show that epiphytes are highly productive, with turnover times of 6–8 days, compared with known values of 30–100 + days for tropical seagrass fronds. The epifaunal grazer community was dominated by a few species of gastropod molluscs (especially Strombus mutabilis Swainson and Cerithium tenellum (Sowerby)). Within habitats, numbers of grazers on particular seagrass species were directly related to their available surface. Three groups of grazers were identified: those occurring on fronds day and night (e.g. S. mutabilis); those foraging over sediment during the day and fronds at night (e.g. Cerithium tenellum); those mainly confined to sediments (e.g. Strombus urceus L.). All epifaunal grazers exhibited upward movement into the seagrass canopy at night. Grazing was non-selective, removing the periphyton, except for the unutilised encrusting coralline algae, in proportion to abundance. Epifaunal grazers consumed between 20 and 62% of periphyton net production and, as in temperate systems, must therefore play a major role in the trophic flux of this tropical seagrass community.
- Indo-West Pacific affinities of Philippine seagrassesFortes, M. D. (Walter de Gruyter, 1988)A dendrograph was developed to depict the mutual relationships among 27 Indo-Pacific countries with similar seagrass floras. Hierarchical (cluster) analysis of the resulting affinities provides strong evidence that the countries could be partitioned into seven discrete provinces. The genus Halophila represents a major connection between most of these provinces, strongly influencing the clustering of the Seagrasses. The degree of species overlap (9.5 — 46.2%) between Province A (where Philippines belongs) and Province G (Western, Southern, and Southeastern portions of Australia) favors vicariance as an explanation. The separation of Kampuchea as a discrete unit within Province A appears to be an artifact of collection rather than a reflection of the true floral affinities in the region. The lack of sufficient basic floristic information remains as the most serious limitation in any attempt to describe the phytogeographic affinities of seagrasses in the Indo-Pacific region.