menu.header.image.unacom.logo
 

Journal Articles

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 4 of 4
  • Variation in epibiont communities among restocked giant clam species (Cardiidae: Tridacninae) and across different habitat types
    de Guzman, Ian Joseph A.; Cabaitan, Patrick C.; Hoeksema, Bert W.; Sayco, Sherry Lyn G.; Conaco, Cecilia (Springer, 2023-07-07)
    Giant clam shells provide a solid substrate for various species of epibionts. Yet, it is not well known how epibiont communities vary among populations of different giant clam species and in giant clams restocked in different habitat types. Here, we examined differences in the epibiont communities of three species of giant clams with different shell morphology (Tridacna gigas, Tridacna derasa, and Hippopus hippopus), and characterized the epibiont communities on T. gigas from three different habitat types (sandy reef flat, seagrass bed, and coral reef). Tridacna gigas had higher species richness, abundance, and cover of epibionts compared to the other two species. Tridacna gigas in coral reef habitat also displayed higher species richness and cover of sessile epibionts, while the same species in the sandy reef flat had higher species richness and abundance of mobile epibionts. Epibiont communities were more variable across habitat types than among different giant clam species restocked in a similar area. Differences in abundance of Trochus sp., Pyramidella sp., and crustose coralline algae contributed to the variability in epibiont communities among the giant clam species and across habitats. A few taxa were observed only on specific giant clam species and sites. For instance, Diadema sp. and Echinometra sp. were found only on T. gigas, and Diadema sp. was present only in the sandy reef flat. Both the complexity of the giant clam shells and habitat type contribute to differences in associated epibiont communities. This further emphasizes the ecological importance of giant clams as habitats for other invertebrates.
  • Ontogenetic variability in the diel activity pattern of the marine gastropod Cassis cornuta(Mollusca: Cassidae)
    Calle, Lala Grace; Cabaitan, Patrick C; Sayco, Sherry Lyn G; Tan, Shau Hwai; Conaco, Cecilia (Oxford University Press, 2024-01-25)
    Examining activity patterns is essential in understanding gastropod feeding and movement ecology. However, the diel activity patterns of large-bodied gastropods, such as Cassis cornuta, remain poorly studied. Here, we conducted outdoor hatchery-based experiments to examine the diel activity patterns of C. cornuta adults and juveniles under natural sunlight and photoperiod. Activities of C. cornuta, such as crawling, hunting, feeding, burrowing and resting on the substratum, were examined every hour for 3 days. Although most individuals were inactive for a greater part of the observation period, active behaviours were recorded for some individuals during both daytime and nighttime, suggesting that C. cornuta is cathemeral, as supported by a nonsignificant result from a Rayleigh's test of uniformity. A higher proportion of adult and juvenile C. cornuta were inactive, either burrowed or resting on the substratum, during the 24-h period. Peak activity time for juveniles started at 20:00, with up to 50% of individuals active, while peak activity time for adults started at 21:00, with up to 20% of active individuals. Adults spent more time resting aboveground, whereas juveniles spent more time burrowed under the sand when not feeding. Juveniles hunted more frequently and spent more time feeding compared to adults. Additionally, juveniles crawled faster and were more successful in capturing sea urchins than adults. The information on variability in the diel activity patterns and movement rates between adult and juvenile C. cornuta would allow further demographic studies, and provide insights into possible conservation strategies for this species.
  • Thumbnail Image
    Fish and benthic communities in an offshore and well-managed coral reef after bleaching disturbance in the Philippines
    Quimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle; Gomez, Elizabeth; Sayco, Sherry Lyn; Dumalagan, Edwin E.; Siringan, Fernando P.; Conaco, Cecilia; Cabaitan, Patrick C. (Springer, 2023-08-29)
    Climate change is perhaps the greatest threat to coral reefs worldwide. However, there is spatial variation in the extent and severity of this disturbance, with offshore and well-managed reefs presumed to be less vulnerable to anthropogenic disturbance. Here, fish and benthic communities at the offshore and well-managed reefs of Apo Reef Natural Park, Philippines, were examined during a bleaching disturbance in 2016 and reassessed 2 (2018) and 3 years (2019) after using scuba surveys. Results showed that benthic communities varied more strongly with year attributed to changes in the benthic cover of coral. These changes were influenced by site, with some sites experiencing coral loss of 41–48%, while other sites exhibited minimal changes. Site differences in coral loss may be associated with coral cover, with sites that had high coral cover prior to bleaching incurring larger loss of coral cover. Fish communities varied more with sites and was associated with differences in the predominant benthos. The stability of fish communities with year despite coral loss may be attributed to the minimal loss of coral cover at some sites. For sites that experienced high losses of coral cover, the presence of alternative and deeper habitats may have provided shelter and food for more mobile fishes maintaining taxonomic composition within sites. This study shows that bleaching disturbance circumvents effective management, but impacts are variable even at small (≤ 3 km) spatial scales. Benthic community composition and presence of alternative habitats potentially alleviate the negative impacts of bleaching on reef fish diversity and abundance.
  • Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions
    Padayhag, Blaire M.; Nada, Michael Angelou L.; Baquiran, Jake Ivan P.; Sison-Mangus, Marilou P.; San Diego-McGlone, Maria Lourdes; Cabaitan, Patrick C.; Conaco, Cecilia (Elsevier, 2023-08)
    Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.