menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 2 of 2
  • Characterization of Alexandrium tamutum (Dinophyceae) isolated from Philippine waters, with the rare detection of paralytic shellfish toxin
    Benico, Garry; Azanza, Rhodora (Association of Systematic Biologists of the Philippines, 2022-04-01)
    Alexandrium tamutum M.Montressor, A.Beran & U.John is a non-toxic, bloom-forming dinoflagellate species commonly reported in temperate waters. In this study, 8 cultures of A. tamutum established from Bolinao Channel and Manila Bay, Philippines were characterized in terms of their morphology, phylogeny and toxicity. Cells were roundish, measuring 25.5 –29.84 µm long and 26.2–28.45 µm wide. The nucleus is equatorially elongated and located at the center of the cell. The chloroplasts are numerous, golden brown in color and radially arranged. Thecal tabulation is typical of Alexandrium: APC, 4', 6'', 6c, 6s, 5''', 2''''. Shape of the taxonomically informative thecal plates such as sixth precingular plate (6'') and posterior sulcal plate (sp) was similar to A. tamutum, which confirms the species identity. However, the presence of anterior and posterior attachment pores observed in our cultured isolates is the first case in this species. Molecular phylogeny inferred from LSU rDNA and ITS supports our identification by forming a well-supported clade composed of A. tamutum strains from other geographic regions. HPLC analysis showed that A. tamutum is generally non-toxic except for strain ATC9 which has low amount of decarbamoylsaxitoxin (dcSTX), resulting to a toxicity of 0.07 fmole STX eq per cell. The present study reports the first verified occurrence of Philippine A. tamutum with reliable morphological and molecular information, including the first record in Manila Bay and first detection of PST in one strain at a certain culture period.
    We acknowledge the Department of Science and Technology Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST PCAARRD) and the University of the Philippines-The Marine Science Institute (UP-MSI) for the funding support. We are grateful for the assistance of Joshua Vacarizas, Keith Pinto and Jenelyn Mendoza for the molecular and toxicity analyses of the cultures. We also acknowledge Estrelita Flores, Emelita Eugenio and Jayson Orpeza for their assistance during the fieldwork and other logistical support.
  • The harmful unarmored Dinoflagellate Karlodinium in Japan and Philippines, with reference to ultrastructure and micropredation of Karlodinium azanzae sp. nov. (Kareniaceae, Dinophyceae)1
    Benico, Garry; Takahashi, Kazuya; Lum, Wai Mun; Yñiguez, Aletta T.; Iwataki, Mitsunori (Phycological Society of America, 2020)
    Twenty-six cultures of the harmful marine dinoflagellate Karlodinium, isolated from Japanese and Philippine coastal waters, were examined using LM, SEM, and molecular phylogeny inferred from ITS and LSU rDNA. Seven Karlodinium species (six from Japan and four from Philippines), K. australe, K. ballantinum, K. decipiens, K. gentienii, K. veneficum, K. zhouanum, and a novel species Karlodinium azanzae sp. nov., were identified based on their morphology and phylogenetic positions.Karlodinium azanzae from Manila Bay, Philippines was further characterized by TEM, HPLC (chloroplast pigment), and bioassay on brine shrimp and other marine zooplankton. Cells of K. azanzae were the largest (mean 25.3 µm long) in Karlodinium, possessed numerous tiny reflective particles, starch grains, and lipid granules, and usually swam at the bottom of the culture vessel. The straight apical structure complex and a ventral pore were common to the genus. The longitudinally elongated nucleus was located at the center, and the yellowish chloroplasts contained an embedded pyrenoid and carotenoid pigments typical of the genus (i.e., fucoxanthin as major carotenoid with its derivatives). TEM revealed a part of the flagellar apparatus, of which the long striated ventral connective is the first report in the Kareniaceae. Phylogenetic trees showed closest affinity of K. azanzae with K. australe and K. armiger. The new species could be differentiated from related species by cell size, position of the nucleus, and characteristic swimming behavior. Lethality of K. azanzae to large zooplankton and micropredation using a developed peduncle was also observed.