Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
Search Results
- Latitudinal variation in growth and survival of juvenile corals in the West and South PacificNozawa, Yoko; Villanueva, Ronald D.; Munasik, Munasik; Roeroe, Kakaskasen Andreas; Mezaki, Takuma; Kawai, Takashi; Guest, James; Arakaki, Seiji; Suzuki, Go; Tanangonan, Jean J. B.; Ang, Put O.; Edmunds, Peter J. (Springer, 2021-08-18)Reef-building corals are found across > 30° of latitude from tropical to temperate regions, where they occupy habitats greatly differing in seawater temperature and light regimes. It remains largely unknown, however, how the demography of corals differs across this gradient of environmental conditions. Variation in coral growth is especially important to coral populations, because aspects of coral demography are dependent on colony size, with both fecundity and survivorship increasing with larger colonies. Here we tested for latitudinal variation in annual growth rate and survival of juvenile corals, using 11 study locations extending from 17° S to 33° N in the West and South Pacific. Regression analyses revealed a significant decline in annual growth rates with increasing latitude, whereas no significant latitudinal pattern was detected in annual survival. Seawater temperature showed a significant and positive association with annual growth rates. Growth rates varied among the four common genera, allowing them to be ranked Acropora > Pocillopora > Porites > Dipsastraea. Acropora and Pocillopora showed more variation in growth rates across latitudes than Porites and Dipsastraea. Although the present data have limitations with regard to difference in depths, survey periods, and replication among locations, they provide evidence that a higher capacity for growth of individual colonies may facilitate population growth, and hence population recovery following disturbances, at lower latitudes. These trends are likely to be best developed in Acropora and Pocillopora, which have high rates of colony growth.We appreciate volunteers, students, and assistants for data collection. Y.N. especially thank H.-S. Hsieh and C.-H. Liu for data measurement, and V. Denis for his comments on the manuscript. Comments from two anonymous reviewers improve our manuscript greatly. The study was funded by the thematic research grant of Academia Sinica (23-2g) and an internal research grant of Biodiversity Research Center, Academia Sinica to Y.N. The Okinawa survey was partly supported by the Japan Society for the Promotion of Science through NEXT Program #GR083. Temperature data for the Okinawa site were provided by the coral reef survey of Monitoring Sites 1000 Project, operated by the Ministry of the Environment, Japan. Temperature data for Moorea were provided by the Moorea Coral Reef LTER, funded by the US National Science Foundation (OCE-0417412).
- Individual and interactive effects of ocean warming and acidification on adult Favites colemaniTañedo, Mikhael Clotilde S.; Villanueva, Ronald D.; Torres, Andrew F.; Ravago-Gotanco, Rachel; San Diego-McGlone, Maria Lourdes (Frontiers Media SA, 2021-09-09)Tropical coral reefs are threatened by local-scale stressors that are exacerbated by global ocean warming and acidification from the post-industrial increase of atmospheric CO2 levels. Despite their observed decline in the past four decades, little is known on how Philippine coral reefs will respond to ocean warming and acidification. This study explored individual and synergistic effects of present-day (pH 8.0, 28°C) and near-future (pH 7.7, 32°C) scenarios of ocean temperature and pH on the adult Favites colemani, a common massive reef-building coral in Bolinao-Anda, Philippines. Changes in seawater temperature drive the physiological responses of F. colemani, whereas changes in pH create an additive effect on survival, growth, and photosynthetic efficiency. Under near-future scenarios, F. colemani showed sustained photosynthetic competency despite the decline in growth rate and zooxanthellae density. F. colemani exhibited specificity with the Cladocopium clade C3u. This coral experienced lower growth rates but survived projected near-future ocean warming and acidification scenarios. Its pH-thermal stress threshold is possibly a consequence of acclimation and adaptation to local environmental conditions and past bleaching events. This research highlights the importance of examining the susceptibility and resilience of Philippine corals to climate-driven stressors for future conservation and restoration efforts in the changing ocean.We are grateful to the Marine Biogeochemistry Laboratory and Bolinao Marine Laboratory of the Marine Science Institute, University of the Philippines for the valuable logistical and laboratory support provided. We would also like to thank Drs. Haruko Kurihara, Atsushi Watanabe, and Toshihiro Miyajima for the design of the mass flow controller used in the experiments. This is UP-MSI contribution number 484.