Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
2 results
Search Results
- Somatostatin venom analogs evolved by fish-hunting cone snails: From prey capture behavior to identifying drug leadsRamiro, Iris Bea L.; Bjørn-Yoshimoto, Walden E.; Imperial, Julita S.; Gajewiak, Joanna; Salcedo, Paula Flórez; Watkins, Maren; Taylor, Dylan; Resager, William; Ueberheide, Beatrix; Bräuner-Osborne, Hans; Whitby, Frank G.; Hill, Christopher P.; Martin, Laurent F.; Patwardhan, Amol; Concepcion, Gisela; Olivera, Baldomero M.; Safavi-Hemami, Helena (American Association for the Advancement of Science, 2022-03-25)Somatostatin (SS) is a peptide hormone with diverse physiological roles. By investigating a deep-water clade of fish-hunting cone snails, we show that predator-prey evolution has generated a diverse set of SS analogs, each optimized to elicit specific systemic physiological effects in prey. The increased metabolic stability, distinct SS receptor activation profiles, and chemical diversity of the venom analogs make them suitable leads for therapeutic application, including pain, cancer, and endocrine disorders. Our findings not only establish the existence of SS-like peptides in animal venoms but also serve as a model for the synergy gained from combining molecular phylogenetics and behavioral observations to optimize the discovery of natural products with biomedical potential.
- Diversity and novelty of venom peptides from Conus (Asprella) rolani revealed by analysis of its venom duct transcriptomeTaguchi, Ryoichi; Masacupan, Dan Jethro; Lluisma, Arturo (Philippine-American Academy of Science and Engineering, 2024-04-22)Conus species in the sub-genus Asprella are poorly studied because they inhabit deep-water habitats. To date, only a few peptides have been characterized from this clade. In this study, the venom duct transcriptome of a member of this clade, Conus rolani, was mined for potential conopeptides. Using a highthroughput RNA sequencing platform (Illumina) and a multiple k-mer de novo assembly, we found 103 putative conopeptide precursor amino acid sequences, including the few peptides previously reported for this species. The sequences, predominantly novel based on amino acid sequence, were diverse, comprising 36 gene superfamilies (including the “unassigned” superfamilies). As observed in other Conus species, the O1 gene superfamily was the most diverse (12 distinct sequences) but interestingly none of the sequences were found to contain the conserved amino acids associated with certain bioactivities in peptides found in piscivorous Conus species. The O2 superfamily was also highly diverse but conikot-ikot and an unassigned superfamily (MMSRMG) were more diverse than the rest of the superfamilies. In terms of gene expression levels, the understudied MEFRR paralog of the ancestral divergent M---L-LTVA superfamily was found to be the most highly expressed in the transcriptome, suggesting a novel role. Additionally, a conopeptide with high sequence similarity to A2 secretory group XII phospholipases is the first reported member of this phospholipase group in Conus and potentially represents a novel superfamily, expanding the catalog of known phospholipases present in cone snail venoms. The discovery of these putative conopeptides provides the first but early glimpse of the diversity and novelty of the peptides in the Asprella group and sets the stage for their functional characterization.This work was funded by the Department of Science and Technology- Philippine Council for Health Research and Development (DOST-PCHRD). The collection of C. rolani samples was made possible under Gratuitous Permit No. 0252- 23 granted by the Department of Agriculture — Bureau of Fisheries and Aquatic Resources, Philippines (DA-BFAR). The fieldwork was done with the help of Olango island fishermen, led by Antonio Mosqueda. We extend our gratitude to Antonio Catalig, Zae-Zae Aguinaldo, Kreighton Cadorna, Jonathan Wong, and Niño Dan Posadas for troubleshooting and assisting in the generation of the figures.