menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 10 of 28
  • Contrasting recolonization strategies in multi-species seagrass meadows
    Rollon, Rene N.; Van Steveninck, Erik D.De Ruyter; Van Vierssen, Wim; Fortes, Miguel D. (Elsevier BV, 1999-12)
    This study shows that in a multi-species seagrass meadow in a shallow and clear-water site, all the former seagrass species were able to recolonize in the artificially created gaps of 0.25 m2 in size within ca. 2 yr. Extrapolation of the recolonization curves of the different species predicted a full recovery within 10 yr post-disturbance. Fitted curves for the dominant species Enhalus acoroides and Thalassia hemprichii showed contrasting strategies, the latter having a comparatively high intrinsic rate, achieving full recovery within ca. 2 yr post-disturbance. E. acoroides was the latest species to establish and the projected full-recovery time was among the longest (ca. 10 yr). The effect of timing of gap creation was generally not significant (except for Syringodium isoetifolium) neither was the temporal variation in density of most species outside the gaps. As recolonization by sexual propagules was found to be low, increasing the gap size would most probably require a much longer recovery period. A crude estimate for E. acoroides would be >10 yr for 1 m2 of gap. Further, since the densities of most seagrass species vary significantly between sites, and colonization rates depend on adjacent seagrass densities, the recovery curves would also be different across sites.
  • Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines
    Terrados, Jorge; Agawin, N.; Duarte, Carlos M.; Fortes, Miguel D.; Kamp-Nielsen, L.; Borum, J. (Elsevier BV, 1999-11)
    Experimental additions of nutrients to the sediment of Enhalus acoroides stands were performed at four sites and three times along the year in Cape Bolinao, NW Philippines to test the hypothesis that seagrass growth in tropical environments is limited by the availability of nutrients. Both the nitrogen content (as % DW) and the nitrogen incorporation of E. acoroides leaves increased after the addition of nutrients. The size (g DW per shoot) and the leaf growth rates (g DW per shoot d−1) of E. acoroides shoots also increased after the addition of nutrients. Nitrogen rather than phosphorus was the nutrient limiting shoot size and leaf growth of E. acoroides in the area. The extent of nutrient limitation of E. acoroides showed high variability both in space and time which cannot be directly linked with differences in light or nutrient availability among the experimental sites.
  • Thumbnail Image
    Root production and belowground seagrass biomass
    Duarte, C. M.; Merino, M.; Agawin, N.; Uri, J.; Fortes, M. D.; Gallegos, M. E.; Marbá, N.; Hemminga, M. A. (Inter-Research Science Center, 1998)
    The root and rhizome biomass of the seagrass species present in 3 mixed and 2 monospecific meadows representative of different floras (Spanish Mediterranean, Mexican Caribbean, Kenyan coast, and the South China Sea off The Philippines) was examined to test for the existence of general patterns in the distribution of their biomass in the sediments, and to test a simple approach based on age determinations to estimate root production. The thickness of the roots was scaled to the thickness of the seagrass rhizomes (r = 0.92, p < 0.001). Root and rhizome biomass were high (>100 and >200 g DW m-2, respectively) for the mixed meadows examined; these belowground structures had a projected surface area often exceeding 1m2 m-2 when roots and rhizomes were considered together, and they formed a dense web of root material comprising several hundred meters per square meter. Belowground biomass showed considerable vertical stratification within the sediments, with a tendency for the larger species to extend deeper into the sediments than smaller ones. This tendency for segregation should reduce the potential interspecific competition for sediment resources, which is likely to be greater in the uppermost layers, where the belowground biomass is more evenly distributed among species. The rate of adventitious root production on vertical shoots varied from species that produced a root on almost every node to species that produced 1 adventitious root for every 10 nodes. Root production--both on horizontal rhizomes and vertical shoots--was substantial, with the combined root production approaching, or exceeding, 1000 g DW m-2 yr-1. The resulting root turnover was quite high, with most values ranging between 2 and 10 yr-1, indicative of a characteristic turnover time of months for the root compartment. The estimates of root production derived here often exceed those of rhizome production and reach values comparable to leaf production, clearly demonstrating that root production is an important component (up to 50%) of total seagrass production.
  • Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses
    Agawin, N.; Duarte, C. M.; Fortes, M. D.; Uri, J. S.; Vermaat, J. (Elsevier BV, 2001-06)
    The analysis of the temporal changes in shoot density, areal leaf biomass, leaf growth and parameters of the photosynthesis–irradiance relationship of three tropical seagrass species (Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata), co-existing in a shallow subtidal meadow in Cape Bolinao, Philippines, shows that species-specific traits are significant sources of temporal variability, and indicates that these seagrass species respond differently to a common environmental forcing. Species-specific differences are much less important as source of variability of the temporal change in chlorophyll concentration of seagrass leaves. The results indicate that the temporal changes in photosynthetic performance of these seagrasses were driven by environmental forcing and their specific responses to it mostly, but the temporal change in their abundance and leaf growth was also controlled by other factors. The significant contribution of species-specific factors in the temporal changes of biomass, growth and photosynthetic performance of co-occurring seagrass species in Cape Bolinao should contribute to the maintenance of the multispecific, highly productive meadows characteristic of pristine coastal ecosystems in Southeast (SE) Asia.
  • Are seagrass growth and survival constrained by the reducing conditions of the sediment?
    Terrados, J.; Duarte, C. M.; Kamp-Nielsen, L.; Agawin, N.; Gacia, E.; Lacap, D.; Fortes, M. D.; Borum, J.; Lubanski, M.; Greve, T. (Elsevier BV, 1999-11)
    A literature review of the effects of the reducing conditions of the sediment on seagrass metabolism, growth and survival, and of the morphological and physiological adaptations that seagrasses show to cope with sediment anoxia is presented and major gaps in knowledge are identified. The hypothesis that sediment anoxia controls the survival of seagrasses was tested experimentally by increasing the oxygen demand of the sediment with the addition of sucrose. Experiments were performed in a tropical (Southeast Asia) multispecific seagrass meadow, a Mediterranean Cymodocea nodosa meadow, and a temperate Zostera marina meadow. Sulfide levels in pore water and vertical redox profiles were used to characterise the effects of the sucrose additions on the sediment, while plant responses were quantified through the changes in shoot density and leaf growth. Sulfide levels in pore water increased and sediment redox potential decreased after the addition of sucrose to the sediment of different seagrass meadows. The effect of the addition of sucrose to the sediment of seagrasses was species-specific. Leaf growth was reduced and shoot mortality increased in some of the tropical species (e.g., Thalassia hemprichii), but not in others. Neither mortality nor leaf growth of the Mediterranean species C. nodosa was affected by sucrose additions, and only leaf growth was reduced two months after the addition of sucrose in Z. marina. Our results suggest that increased sediment anoxia might be a factor promoting growth inhibition and mortality in seagrasses, although strong differences have been found among different species and environments.
  • The case for restoration of tropical coastal ecosystems
    Yap, Helen T. (Elsevier BV, 2000-01)
    At no time have humans so altered their natural environment than the present. Marine ecosystems have not been spared, and the degradation of coastal habitats has reached severe proportions in many parts of the world. The mere setting aside of areas for protection may not be enough to ensure adequate production and provision of services for a growing global human population. Hence, the active restoration of habitats, in addition to protection and preservation, is probably the more desirable conservation strategy. Accumulated experience over several decades has demonstrated that the rehabilitation or even restoration of damaged coastal ecosystems is feasible. However, the degree of difficulty and expense involved vary, with coral reefs being the most complicated habitats to restore, followed by seagrass beds and then mangrove forests. In ecosystem restoration, a comprehensive strategy based on sound biological and ecological principles, and proven techniques must be developed. A concrete, achievable goal must be articulated. Because of the dynamic nature of ecosystems, and the inability to accurately predict pathways of succession after a community is established through artificial means, subsequent modifications to a project must proceed within a flexible framework of adaptive management. Finally, for restoration efforts to be successful, local communities must participate actively in cooperation with local governments in accordance with the principle of co-management.
  • Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia
    Terrados, J.; Duarte, C. M.; Fortes, M. D.; Borum, J.; Agawin, N.; Bach, S.; Thampanya, U.; Kamp-Nielsen, L.; Kenworthy, W. J.; Geertz-Hansen, O.; Vermaat, J. (Elsevier BV, 1998-05)
    The patterns of change in species richness and biomass of Southeast Asian seagrass communities along siltation gradients were compared at different sites in The Philippines and Thailand. Seagrass species richness and community leaf biomass declined sharply when the silt and clay content of the sediment exceeded 15%. Syringodium isoetifolium and Cymodocea rotundata were present only in multispecific meadows, while Enhalus acoroides was the only species remaining in heavily silted sediments. The following ranking of species sensitivity to siltation is proposed (from the least to most sensitive): S. isoetifoliumC. rotundataThalassia hemprichiiCymodocea serrulataHalodule uninervisHalophila ovalisEnhalus acoroides. Positive correlations were found between species richness and both community leaf biomass and the leaf biomass of individual seagrass species. The increase in community biomass with increasing species richness was associated with a more even distribution of the leaf biomass among seagrass species. The relationships between percent silt and clay in the sediment and seagrass community leaf biomass and species richness provide useful dose–response relationships which can be used to set allowable or threshold siltation loads in SE Asian coastal waters, and indicate that species loss from seagrass meadows is an early warning of detrimental siltation loads.
  • Thumbnail Image
    Distribution, temporal change, and conservation status of tropical seagrass beds in Southeast Asia: 2000–2020
    Sudo, Kenji; Quiros, T. E. Angela L.; Prathep, Anchana; Luong, Cao Van; Lin, Hsing-Juh; Bujang, Japar Sidik; Ooi, Jillian Lean Sim; Fortes, Miguel D.; Zakaria, Muta Harah; Yaakub, Siti Maryam; Tan, Yi Mei; Huang, Xiaoping; Nakaoka, Masahiro (Frontiers Media SA, 2021-07-08)
    Although Southeast Asia is a hotspot of global seagrass diversity, there are considerable information gaps in the distribution of seagrass beds. Broad-scale seagrass distribution has not been updated in the global seagrass database by UNEP-WCMC since 2000, although studies on seagrasses have been undertaken intensively in each region. Here we analyze the recent distribution of tropical seagrass beds, their temporal changes, causes of decline and conservation status in Southeast Asia (plus southern mainland China, Taiwan and Ryukyu Island of Japan) using data collected after 2000. Based on the 195 literature published since 2000, we identified 1,259 point data and 1,461 polygon data showing the distribution of seagrass beds. A large discrepancy was found in the seagrass bed distribution between our updated data and the UNEP-WCMC database, mostly due to inaccurate and low resolution location information in the latter. Temporal changes in seagrass bed area analyzed for 68 sites in nine countries/regions demonstrated that more than 60% of seagrass beds declined at an average rate of 10.9% year–1, whereas 20% of beds increased at an average rate of 8.1% year–1, leading to an overall average decline of 4.7% year–1. Various types of human-induced threats were reported as causes for the decline, including coastal development, fisheries/aquaculture, and natural factors such as typhoons and tsunamis. The percentage of seagrass beds covered with existing marine protected areas (MPAs) varied greatly among countries/regions, from less than 1% in Brunei Darussalam and Singapore to 100% in southern Japan. However, the degree of conservation regulation was not sufficient even in regions with higher MPA coverage. The percentage of seagrass beds within EBSAs (Ecologically and Biologically Significant Area determined by the Convention of Biological Diversity) was higher than that within MPAs because EBSAs cover a greater area than MPAs. Therefore, designating EBSAs as legally effective MPAs can greatly improve the conservation status of seagrass beds in Southeast Asia.
    This manuscript is a contribution to the Asia-Pacific Marine Biodiversity Observation Network (AP-MBON) of the Group on Earth Observations Biodiversity Observation Network (GEO BON). We are grateful to the members of Phuket Marine Biological Center in Thailand and the Vietnam Academy of Science and Technology for providing local literature and data on seagrass bed distribution. This paper is dedicated to Chittima Aryuthaka who contributed greatly to the development of marine biology and ecology in Asia during her lifetime.
  • An experimental test of the occurrence of competitive interactions among SE Asian seagrasses
    Duarte, C. M.; Terrados, J.; Agawin, N.; Fortes, M. D. (Inter-Research Science Center, 2000)
    The occurrence of competitive interactions among the seagrass species present in a multispecific SE Asian seagrass meadow was tested by the cumulative removal of shoots of an increasing number of seagrass species from the meadow in order of decreasing and increasing resource requirements for plant growth. The removal of shoots of the dominant species Thalassia hemprichii had very few effects on shoot size, shoot density and leaf area index of the extant seagrass species. The shoot density of Enhalus acoroides decreased when T. hemprichii shoots were removed, but that of Syringodium isoetifolium increased when the shoots of all the species with higher resource requirements than itself were removed from the experimental plots. The size of Halophila ovalis shoots decreased by 30% when both T. hemprichii and E. acoroides shoots were removed from the plots. The shoot density of T. hemprichii increased only when the shoots of all the accompanying species were removed from the plots. The results show that species interactions in this multispecific seagrass meadow are asymmetric. The elucidation of the nature of the interactions among seagrass species provides a key to understanding the maintenance of the high biodiversity and production that characterizes pristine SE Asian coastal ecosystems.
  • Update of seagrass cover and species diversity in Southern Viet Nam using remote sensing data and molecular analyses
    Nguyen, Xuan-Vy; Lau, Va-Khin; Nguyen-Nhat, Nhu-Thuy; Nguyen, Trung-Hieu; Phan, Kim-Hoang; Dao, Viet-Ha; Ho-Dinh, Duan; Hayashizaki, Ken-ichi; Fortes, Miguel D.; Papenbrock, Jutta (Elsevier, 2021-05)
    Along with coral reefs and mangroves, seagrass meadows are being threatened globally Southeast Asia is considered within the area of seagrasses’ cradle of diversity. However, information on the current status of seagrass beds from Southern Viet Nam is limited due to lack of reliable data about seagrass species occurring in the Southeast Asian region. One factor is the difficulty of unambiguous species identification. For example, the leaf morphological characteristics of Halophila ovalis and closely related species are overlapping which leads to misidentifications. In this study, the latest satellite Landsat 8 OLI and SENTINEL-2B image analyses were applied to determine the distribution of seagrass beds in Southern Viet Nam. Detailed morphological and genetic marker analyses were used to determine and update the species composition. The present study together with literature reviews indicate that the total area of seagrass beds from Southern Viet Nam are 10,832.1 ha. 2562 ha (or 19.1%) of seagrass coverage has been lost. The seagrass beds at Phu Quoc Island are the largest with 7579 ha. The occurrence of Halophila major is updated for almost all off-shore islands and open-water areas.
    We are deeply indebted to all staff of the Department of Marine Botany, Center for Oceanographic Data, GIS and Remote Sensing, Institute of Oceanography (ION), Viet Nam, for their support, generously providing many valuable suggestions. We thank the VAST Key lab on Food and Environmental Safety (Central Viet Nam) for the ability to use their equipment. We would like to thank the three anonymous reviewers for their suggestions, comments, and editing. We also thank to JSPS Core-toCore Program CREPSUM.JPJSCCB20200009. This work was supported by Vietnam Academy of Science and Technology, grant code VAST04.01/20-21.