menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 6 of 6
  • Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia
    Terrados, J.; Duarte, C. M.; Fortes, M. D.; Borum, J.; Agawin, N.; Bach, S.; Thampanya, U.; Kamp-Nielsen, L.; Kenworthy, W. J.; Geertz-Hansen, O.; Vermaat, J. (Elsevier BV, 1998-05)
    The patterns of change in species richness and biomass of Southeast Asian seagrass communities along siltation gradients were compared at different sites in The Philippines and Thailand. Seagrass species richness and community leaf biomass declined sharply when the silt and clay content of the sediment exceeded 15%. Syringodium isoetifolium and Cymodocea rotundata were present only in multispecific meadows, while Enhalus acoroides was the only species remaining in heavily silted sediments. The following ranking of species sensitivity to siltation is proposed (from the least to most sensitive): S. isoetifoliumC. rotundataThalassia hemprichiiCymodocea serrulataHalodule uninervisHalophila ovalisEnhalus acoroides. Positive correlations were found between species richness and both community leaf biomass and the leaf biomass of individual seagrass species. The increase in community biomass with increasing species richness was associated with a more even distribution of the leaf biomass among seagrass species. The relationships between percent silt and clay in the sediment and seagrass community leaf biomass and species richness provide useful dose–response relationships which can be used to set allowable or threshold siltation loads in SE Asian coastal waters, and indicate that species loss from seagrass meadows is an early warning of detrimental siltation loads.
  • An experimental test of the occurrence of competitive interactions among SE Asian seagrasses
    Duarte, C. M.; Terrados, J.; Agawin, N.; Fortes, M. D. (Inter-Research Science Center, 2000)
    The occurrence of competitive interactions among the seagrass species present in a multispecific SE Asian seagrass meadow was tested by the cumulative removal of shoots of an increasing number of seagrass species from the meadow in order of decreasing and increasing resource requirements for plant growth. The removal of shoots of the dominant species Thalassia hemprichii had very few effects on shoot size, shoot density and leaf area index of the extant seagrass species. The shoot density of Enhalus acoroides decreased when T. hemprichii shoots were removed, but that of Syringodium isoetifolium increased when the shoots of all the species with higher resource requirements than itself were removed from the experimental plots. The size of Halophila ovalis shoots decreased by 30% when both T. hemprichii and E. acoroides shoots were removed from the plots. The shoot density of T. hemprichii increased only when the shoots of all the accompanying species were removed from the plots. The results show that species interactions in this multispecific seagrass meadow are asymmetric. The elucidation of the nature of the interactions among seagrass species provides a key to understanding the maintenance of the high biodiversity and production that characterizes pristine SE Asian coastal ecosystems.
  • Update of seagrass cover and species diversity in Southern Viet Nam using remote sensing data and molecular analyses
    Nguyen, Xuan-Vy; Lau, Va-Khin; Nguyen-Nhat, Nhu-Thuy; Nguyen, Trung-Hieu; Phan, Kim-Hoang; Dao, Viet-Ha; Ho-Dinh, Duan; Hayashizaki, Ken-ichi; Fortes, Miguel D.; Papenbrock, Jutta (Elsevier, 2021-05)
    Along with coral reefs and mangroves, seagrass meadows are being threatened globally Southeast Asia is considered within the area of seagrasses’ cradle of diversity. However, information on the current status of seagrass beds from Southern Viet Nam is limited due to lack of reliable data about seagrass species occurring in the Southeast Asian region. One factor is the difficulty of unambiguous species identification. For example, the leaf morphological characteristics of Halophila ovalis and closely related species are overlapping which leads to misidentifications. In this study, the latest satellite Landsat 8 OLI and SENTINEL-2B image analyses were applied to determine the distribution of seagrass beds in Southern Viet Nam. Detailed morphological and genetic marker analyses were used to determine and update the species composition. The present study together with literature reviews indicate that the total area of seagrass beds from Southern Viet Nam are 10,832.1 ha. 2562 ha (or 19.1%) of seagrass coverage has been lost. The seagrass beds at Phu Quoc Island are the largest with 7579 ha. The occurrence of Halophila major is updated for almost all off-shore islands and open-water areas.
    We are deeply indebted to all staff of the Department of Marine Botany, Center for Oceanographic Data, GIS and Remote Sensing, Institute of Oceanography (ION), Viet Nam, for their support, generously providing many valuable suggestions. We thank the VAST Key lab on Food and Environmental Safety (Central Viet Nam) for the ability to use their equipment. We would like to thank the three anonymous reviewers for their suggestions, comments, and editing. We also thank to JSPS Core-toCore Program CREPSUM.JPJSCCB20200009. This work was supported by Vietnam Academy of Science and Technology, grant code VAST04.01/20-21.
  • Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines
    Bach, S. S.; Borum, J.; Fortes, M. D.; Duarte, C. M. (Inter-Research Science Center, 1998)
    The response of mixed Southeast Asian seagrass beds to siltation was analyzed based on field data, a transplantation experiment and experimental manipulation of light availability in seagrass populations along a silt gradient at Cape Bolinao,The Philippines. Seagrass species diversity, shoot density and depth penetration declined with increasing amounts of suspended material and increasing water column light attenuation along the silt gradient. The seagrass species could be ranked according to decreasing tolerance to siltation as: Enhalus acoroides > Cymodocea serrulata > Halodule uninervis > Thalassia hemprichii > Halophila ovalis > Cymodocearotundata > Syringodium isoetifolium. A gradual decline in shoot density and depth penetration of the different species along the silt gradient suggested that changes in the vertical light attenuation coefficient in the water column, primarily caused by differences in suspended inorganic solids, was the most important factor affecting seagrass performance. However, inconsistency among the species in response to increasing water depth, artificial shading and transplantation indicated that other factors, such as siltation-derived changes in sediment conditions, contribute to the sequential loss of seagrass species along the silt gradient.
  • Observations on a multi-seagrass meadow offshore of Negros Oriental, Republic of the Philippines
    Tomasko, D. A.; Dawes, C. J.; Fortes, M. D.; Largo, D. B.; Alava, M. N. R. (Walter de Gruyter GmbH, 1993)
    Eight species of seagrasses were encountered in a multi-species meadow offshore of Negros Oriental, Republic of the Philippines: Halodule uninervis (Forssk.) Aschers., Halodule pinifolia (Miki) Den Hartog, Cymodocea rotundata Ehrenb. et Hempr. ex Aschers., Cymodocea serrulata (R. Br.) Aschers., Syringodium isoetifolium (Aschers.) Dandy, Thalassia hemprichii (Ehrenb.) Aschers., Enhalus acoroides (L./.) Royle, and Halophila ovalis (R. Br.) Hook./. A transect survey showed that five of the eight species were quite common, with cover estimates of individual species ranging from less than 10% to over 50%. Above- and below-ground biomass and leaf productivity data were collected for at least four species at each of three stations. Above-ground biomass for combined species ranged from 125 to 250g dw m~2, and below-ground biomass of combined species ranged from 264 to 828 g dw m~2. Areal production rates for combined species ranged between 4.78 to 9.38g dw m~2 d"1, with considerable inter-specific variation. High levels of protein and low levels of soluble carbohydrate were consistent with the rapid above-ground growth observed for all species, and also suggested high growth for below-ground portions of C. serrulata, H. uninervis, S. isoetifolium, and T. hemprichii. Epiphyte loads were low compared to sister species from other locations, perhaps due to rapid blade turnover rates (up to 7.8% day"1 for S. isoetifolium).
  • Thumbnail Image
    17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern Philippines
    Tanaka, Yoshiyuki; Go, Gay Amabelle; Watanabe, Atsushi; Miyajima, Toshihiro; Nakaoka, Masahiro; Uy, Wilfredo H.; Nadaoka, Kazuo; Watanabe, Shuichi; Fortes, Miguel D. (Elsevier, 2014)
    Effects of fish culture can alter the adjacent ecosystems. This study compared seagrass species compositions in 2012 with those in 1995, when fish culture was less intensive compared to 2012 in the region. Observations were conducted at the same four sites around Santiago Island, Bolinao: (1) Silaqui Island, (2) Binaballian Loob, (3) Pislatan and (4) Santa Barbara, and by using the same methods as those of Bach et al. (1998). These sites were originally selected along a siltation gradient, ranging from Site 1, the most pristine, to Site 4, a heavily silted site. By 2012, fish culture had expanded around Sites 2, 3 and 4, where chlorophyll a (Chl a) was greater in 2012 than in 1995 by one order of magnitude. Enhalus acoroides and Cymodocea serrulata, which were recorded in 1995, were no longer present at Site 4, where both siltation and nutrient load are heavy.