menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 4 of 4
  • Transcriptome analysis of growth variation in early juvenile stage sandfish Holothuria scabra
    Ordoñez, June Feliciano F.; Galindez, Gihanna Gaye S.T.; Gulay, Karina Therese; Ravago-Gotanco, Rachel (Elsevier, 2021-12)
    The sandfish Holothuria scabra is a high-value tropical sea cucumber species representing a major mariculture prospect across the Indo-Pacific. Advancements in culture technology, rearing, and processing present options for augmenting capture production, stock restoration, and sustainable livelihood activities from hatchery-produced sandfish. Further improvements in mariculture production may be gained from the application of genomic technologies to improve performance traits such as growth. In this study, we performed de novo transcriptome assembly and characterization of fast- and slow-growing juvenile H. scabra from three Philippine populations. Analyses revealed 66 unigenes that were consistently differentially regulated in fast-growing sandfish and found to be associated with immune response and metabolism. Further, we identified microsatellite and single nucleotide polymorphism markers potentially associated with fast growth. These findings provide insight on potential genomic determinants underlying growth regulation in early juvenile sandfish which will be useful for further functional studies.
    The authors are grateful to the following individuals and institutions for providing samples and facilitating their collection: D. Ticao of (Finfish Hatcheries, Inc.); Dr. M.A. Juinio-Menez, ˜ J.R. Gorospe, C. Edullantes, B. Rodriguez, A. Rioja, T. Catbagan, and G. Peralta of Bolinao Marine Laboratory, University of the Philippines Marine Science Institute; and E. Tech (Palawan Aquaculture Corp.).
  • Age, growth, and population structure of Conomurex luhunuas
    Sanchez-Escalona, Katherine; Aliño, Porfirio (National Fisheries Research and Development Institute, 2022-12)
    Age and growth dynamics of Conomurex luhuanus were investigated to determine the population structure. Age-specific change in shell shape determined with geometric morphometrics revealed discrimination of shape between 0-3 years old at 99–100% while 3–4 years old can be separated with 81% certainty. Using the age discrimination data, K and L∞ were estimated at 1.00 year and 7.28 cm, respectively. Recruitment is bimodal with natural mortality (M) of 0.71 and fishing mortality (F) approximated at 3.92 year. The exploitation rate (E) is 0.85 year, indicating probable overharvesting of the population under study. The presence of a deep-water population, age-specific burying behavior, and bimodal recruitment pattern are possible resilience factors.
    The study was supported by a grant from PCAARRD-DOST.
  • Thumbnail Image
    Increased coral larval supply enhances recruitment for coral and fish habitat restoration
    Harrison, Peter L.; dela Cruz, Dexter W.; Cameron, Kerry A.; Cabaitan, Patrick C. (Frontiers Media SA, 2021-12-01)
    Loss of foundation reef-corals is eroding the viability of reef communities and ecosystem function in many regions globally. Coral populations are naturally resilient but when breeding corals decline, larval supply becomes limiting and natural recruitment is insufficient for maintaining or restoring depleted populations. Passive management approaches are important but in some regions they are proving inadequate for protecting reefs, therefore active additional intervention and effective coral restoration techniques are needed. Coral spawning events produce trillions of embryos that can be used for mass larval rearing and settlement on degraded but recoverable reef areas. We supplied 4.6 million Acropora tenuis larvae contained in fine mesh enclosures in situ on three degraded reef plots in the northwestern Philippines during a five day settlement period to initiate restoration. Initial mean larval settlement was very high (210.2 ± 86.4 spat per tile) on natural coral skeleton settlement tiles in the larval-enhanced plots, whereas no larvae settled on tiles in control plots. High mortality occurred during early post-settlement life stages as expected, however, juvenile coral survivorship stabilised once colonies had grown into visible-sized recruits on the reef by 10 months. Most recruits survived and grew rapidly, resulting in significantly increased rates of coral recruitment and density in larval-enhanced plots. After two years growth, mean colony size reached 11.1 ± 0.61 cm mean diameter, and colonies larger than 13 cm mean diameter were gravid and spawned, the fastest growth to reproductive size recorded for broadcast spawning corals. After three years, mean colony size reached 17 ± 1.7 cm mean diameter, with a mean density of 5.7 ± 1.25 colonies per m–2, and most colonies were sexually reproductive. Coral cover increased significantly in larval plots compared with control plots, primarily from A. tenuis recruitment and growth. Total production cost for each of the 220 colonies within the restored breeding population after three years was United States $17.80 per colony. A small but significant increase in fish abundance occurred in larval plots in 2018, with higher abundance of pomacentrids and corallivore chaetodontids coinciding with growth of A. tenuis colonies. In addition, innovative techniques for capturing coral spawn slicks and larval culture in pools in situ were successfully developed that can be scaled-up for mass production of larvae on reefs in future. These results confirm that enhancing larval supply significantly increases settlement and coral recruitment on reefs, enabling rapid re-establishment of breeding coral populations and enhancing fish abundance, even on degraded reef areas.
    We thank the Australian Centre for International Agricultural Research (ACIAR) for funding this research: grant ACIAR/FIS/2014/063 to PH, PC and J. Bennett. Thanks to ACIAR staff Chris Barlow, Ann Fleming, and Mai Alagcan for their ongoing support. Sincere thanks to the Galsim Family for use of Tanduyong Island as a field research base during the coral restoration fieldwork. We also thank staff and students at the Bolinao Marine Laboratory, Marine Science Institute, University of the Philippines, Diliman for their assistance with reef work: Elizabeth Gomez, Charlon Ligson, Rickdane Gomez and Fernando Castrence (including fish surveys), Marcos Ponce, Joey Cabasan, Sheldon Boco, Gabriel de Guzman, Albert Ponce, and Allan Abuan. We also thank Grant Cameron for field support and helping design, build and refine the prototype floating spawn catcher frames in 2016 and 2017.
  • Laboratory and field growth studies of commercial strains of Eucheuma denticulatum and Kappaphycus alvarezii in the Philippines
    Dawes, Clinton J.; Lluisma, A. O.; Trono, G. C. (Springer, 1994-02)
    Daily growth rates of 0.1 to 8.4% d-1 for the brown form and 0.2 to 6.3% d-1 of the green form were measured for 3 to 5-cm long branches of the tropical red seaweed Kappaphycus alvarezii cultured in the laboratory. Highest growth rates were found using inexpensive enrichments such as soil water and coconut water supplemented with 0.7 mM N and 13 µM P and with a liquid fertilizer, Algafer, produced from seaweeds in the Philippines. Laboratory grown branches of both K. alvarezii and Eucheuma denticulatum transplanted to rafts in the field showed daily growth rates of 4.4 to 8.9% d-1, as high or higher than other reported growth rates. The studies, carried out in the Philippines, demonstrate the viability and high yield of laboratory cultivars and methods to keep laboratory culture costs low.