menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 10 of 30
  • A unique reproductive strategy in the mushroom coral Fungia fungites
    Eyal-Shaham, Lee; Eyal, Gal; Ben-Zvi, Or; Sakai, Kazuhiko; Harii, Saki; Sinniger, Frederic; Hirose, Mamiko; Cabaitan, Patrick; Bronstein, Omri; Feldman, Bar; Shlesinger, Tom; Levy, Oren; Loya, Yossi (Springer Science and Business Media LLC, 2020-09-30)
    The vast majority of scleractinian corals are either simultaneous hermaphrodites or gonochoric. Exceptions to these are rare. Nevertheless, species belonging to the family Fungiidae are known to exhibit a wide variety of reproductive strategies. We examined the reproductive ecology of the mushroom coral Fungia fungites in Okinawa. Our study was conducted as part of a long-term, wide-ranging project (2009–2010 and 2013–2017) which explored the unique reproductive strategies of several species belonging to the family Fungiidae. Here we report the co-occurrence of males, females, and hermaphrodite individuals in a long-term monitored population of the reproductively atypical brooder coral F. fungites within the family Fungiidae. F. fungites status as a single-polyped solitary coral, was used to perform manipulative experiments to determine the degree of dependence of an individual coral on its conspecific neighbors for reproduction, and examined whether a constant sperm supply is obligatory for the continuous production of planulae. Isolated females of F. fungites exhibited a distinctive reproductive strategy, expressed in continuously releasing planulae also in the absence of males. Observations conducted on a daily basis for 2.5 months (throughout the reproductive season of 2015) revealed that some of these individuals released planulae continuously, often between tens and hundreds every day. In an effort to explain this phenomenon, three hypotheses are discussed: (1) Self-fertilization; (2) Asexual production of planulae (i.e., parthenogenetic larvae); and (3) Extended storage of sperm. Finally, we emphasize the importance of continuous and long-term monitoring of studies of coral reproduction; through further genetic studies of coral populations representing a broad range of species and their larval origin.
  • MPA-FishMApp – a citizen science app that simplifies monitoring of coral reef fish density and biomass in marine protected areas
    Abesamis, Rene; Balingit, Rodel; de Castro, Romulo; Aguila, Raphael Nelo; Cabiguin, Maryjune; Villagracia, Julius; Susmeña, Marynoll; Montemar, Mario Neil; Yocor, Antonio (National Fisheries Research and Development Institute, 2022-12)
    Monitoring changes in fish density and biomass inside marine protected areas (MPAs) through fish visual census (FVC) can determine if MPAs are achieving their goal of promoting fish population recovery. Simplified FVC methods have been developed for citizen scientists to enable them to monitor fish populations in MPAs. However, MPA monitoring programs led by local stakeholders remain rare and difficult to sustain due to technical barriers related to FVC data management. Here, we describe and evaluate a novel online app called MPA-FishMApp, which we developed to help stakeholders of MPAs that protect coral reefs in the Philippines efficiently store, analyze, and visualize FVC data. MPA-FishMApp is coupled to a simplified FVC method wherein the observer records only 21 reef fish species groups during surveys. The app provides a simple data entry interface, cloud storage, and algorithms to estimate fish density and biomass. Spatial and temporal trends in fish density and biomass can be instantaneously visualized in the app based on relative importance to fisheries. Field testing suggested that the MPA-FishMApp methodology (simplified FVC and app) is sensitive enough to detect qualitative patterns showing differences in density and biomass that may develop between MPAs and fished sites, especially in fishes that are highly important to fisheries. However, users must have sufficient training and experience in simplified FVC to produce reliable data. MPA-FishMApp may help reverse the lack of monitoring in MPAs across the Philippines and offers an accessible, transparent, and auditable venue for collaboration between citizen scientists and professional scientists.
  • C30 — A simple, rapid, scientifically valid, and low-cost method for citizen-scientists to monitor coral reefs
    Licuanan, Wilfredo Y.; Mordeno, Princess Zyrlyn B.; Go, Marco V. (Elsevier, 2021-09)
    The extent and speed of recent changes in reef coral abundances due to ocean warming and human impacts require more widespread capability to map and measure these changes, especially in countries like the Philippines. We present “C30”, a simple, rapid, scientifically valid, and low-cost method for skin divers or freedivers to take random photo-quadrat images within predefined stations on the upper reef slope. C30 yields coral cover data similar to those collected using the more intensive C5 method and can be as powerful in detecting small differences in reef cover. Less time is also needed for training personnel and sampling. However, more photo-quadrat images, better cameras, and closer collaboration with local scientists are required if higher precision data and estimates of coral diversity are needed from C30. C30 is a valuable tool for participatory, community-based citizen science monitoring of coral reefs.
    We thank the Department of Science and TechnologyPhilippine Council for Agriculture, Aquatic and Natural Resources Research and Development (QMSR-MRRD-COR-0-1209 and PCAARRD-GIA 4478), and the Department of Environment and Natural Resources Coral Reef Visualization and Assessment, The Philippines Project for funding some of the fieldwork. The initial research on citizen-science monitoring was undertaken with funding from Oscar M. Lopez Center for Climate Change Adaptation and Disaster Risk Management Foundation, Inc., The Philippines (Grant number OMLC RG 2017-18). We also thank the DLSU Innovation and Technology Office for the patent application for the C30 monopod in the Intellectual Property Office of the Philippines. The comments and suggestions of the reviewers are acknowledged and are very much appreciated. WY Licuanan is the holder of the Br H Alfred Shields FSC Professorial Chair in Biology and Br Cresentius Richard Duerr FSC Professorial Chair in Biochemistry.
  • Thumbnail Image
    Through the boundaries: Environmental factors affecting reef benthic cover in marine protected areas in the Philippines
    Panga, Fleurdeliz M.; Anticamara, Jonathan A.; Quibilan, Miledel Christine C.; Atrigenio, Michael P.; Aliño, Porfirio M. (Frontiers Media SA, 2021-08-18)
    Philippine coral reefs have been on the decline since the 1970s, and this degradation has posed a risk to biodiversity, food security, and livelihood in the country. In an effort to arrest this degradation, marine protected areas (MPAs) were established across the country. MPAs are known to improve fish biomass, but their effect on live coral cover and other benthos is not yet well documented and understood. In this study, 28 MPAs across the Philippines were surveyed comparing benthic cover and indices between protected reefs and adjacent unprotected reefs. No consistent differences were found between reefs inside and outside MPAs through all the benthic categories and reef health indices considered that are indicative of protection effects or recovery within MPAs. However, there were notable site-specific differences in benthic cover across the study MPAs-suggesting that factors other than protection play important roles in influencing benthic cover inside and outside of MPAs. Storm frequency and proximity to rivers, as a proxy for siltation, were the strongest negative correlates to live coral cover. Also, high coastal population, a proxy for pollution, and occurrence of blast and poison fishing positively correlated with high dead coral cover. The lack of significant difference in benthic cover between reefs inside and outside MPAs suggests that protection does not necessarily guarantee immediate improvement in benthic condition. Correlations between benthic condition and storm frequency, siltation, and pollution suggest that it is necessary to augment MPAs with other management strategies that will address the multiple stressors that are usually indiscriminate of MPA boundaries. Supplementing long-term and systematic monitoring of benthic cover and biodiversity inside and outside of MPAs with data on other important environmental and human impact variables will help improve understanding of benthic cover and biodiversity dynamics inside and outside of MPA boundaries.
    We would like to thank RARE Philippines and USAID, in collaboration with the Marine Environment and Resources Foundation (MERF), for research funding, coordination, and support in the execution of this research. We would also like to thank the RARE Conservation Fellows and Local Government Units for logistical support and coordination on all of the MPAs studied. We would also like to thank the Fisheries team of the MSI Community Laboratory for the municipal profile data, and the MSI Physical Oceanography Laboratory for the storm frequency and relative exposure index used in the environmental correlation. We would also like to thank the rest of the MERF-RARE Team/MSI Community Ecology Laboratory who joined and supported the many months of data gathering, encoding, and data analysis.
  • Thumbnail Image
    Spatial and short-term temporal patterns of octocoral assemblages in the West Philippine Sea
    Lalas, Jue Alef A.; Lim, Romina Therese S.; Cabasan, Joey P.; Segumalian, Christine S.; Luciano, Rhea Mae A.; Valino, Darryl Anthony M.; Jacinto, Melchor R.; Arceo, Hazel O.; Baria-Rodriguez, Maria Vanessa (Frontiers Media SA, 2022-01-06)
    Octocorals are relatively understudied than other coral reef organisms despite their ecological and economic values. The Philippines is known to have high marine biodiversity, but information on octocorals is lacking. This study investigated spatial and temporal variations in the assemblage of octocorals in selected reef sites in the West Philippine Sea (WPS)- the Kalayaan Island Group (i.e., Pag-asa, Sabina, Lawak, and Northeast Investigator) and Ulugan in 2017 and 2019. Results showed high octocoral taxonomic richness (at least 10 families) in the study sites. Mean percent octocoral cover in WPS was 5.35% SE ± 0.55, with Sabina having the highest octocoral cover in both years. Significant differences in octocoral cover were observed among sites in both years, but among-station differences were only observed in 2017. Octocoral assemblage also differed among sites in both years (ANOSIM: R > 0.5, p < 0.05), wherein different octocoral taxa dominated in different sites. In particular, variations were driven by high cover of holaxonians, nephtheids, and coelogorgiids in Sabina, and clavulariids, tubiporiids, and xeniids in Northeast Investigator in 2017. In 2019, significant variations were driven by high cover of helioporiids in Pag-asa, while Sabina had higher abundance of holaxonians, nephtheids, alcyoniids, and xeniids. Short-term temporal variation on octocoral cover in monitoring stations in Pag-asa was not observed (Kruskal-Wallis, p > 0.05), although the overall mean octocoral cover increased from 1.23% ± SE 0.47 in 2017 to 2.09% SE ± 0.37 in 2019. Further, there was no significant change in the octocoral assemblage in Pag-asa between years (ANOSIM, R = 0.11, p = 0.07). This study highlights high octocoral taxonomic richness in the WPS relative to other sites in the Indo-Pacific Region and provides baseline information on the octocoral assemblages, which can be useful for future ecological studies and marine biodiversity conservation efforts.
    We would like to thank the Department of Agriculture-Bureau of Fisheries and Aquatic Resources (DA-BFAR), Philippine Coast Guard (PCG), the Municipality of Kalayaan, and the Philippine Navy for their assistance and support during the research expeditions in the West Philippine Sea. We also thank Lovely Joy Heyres for assisting in the field collection and image analysis, and Kevin Yatco and Socorro Rodrigo for assisting in the satellite product processing. We also thank the valuable insights and suggestions given by the editor and reviewers of this journal that helped improve this manuscript.
  • Survival and sexual maturity of sexually propagated Acropora verweyi corals 4 years after outplantation
    Ligson, Charlon A.; Cabaitan, Patrick C. (Wiley, 2021-04-19)
    Most coral reef restoration efforts are carried out over 1–2 years, and few have assessed long-term (over 3 years) outcomes. Although studies of outplantation of sexually propagated corals have reported promising initial results, few studies have followed outplanted corals to maturity. Here, we monitored sexually propagated Acropora verweyi corals for 4 years post-outplantation to determine their survival and sexual maturity. These corals were outplanted when 4 months old in two size classes (small = 0.3–0.5 cm; large = 1.0–1.5 cm) at two sites in the northwestern Philippines. Four years after outplantation, the 240 colonies of A. verweyi exhibited 17.9% survival, with mean diameters ranging from 7.48–26.8 cm. Most of the surviving outplants were gravid (81.4% of the 43 colonies) with mean diameters of at least 11.8 cm. Higher survivorship was detected in the initial large size class outplants than in the small ones at the natal site, but not at the other site. However, 4 years after outplantation, there was no significant difference in terms of geometric mean diameter between the initial size classes or between the sites. Results show that 4-month-old outplants of sexually propagated corals can survive until sexual maturity and are already capable of contributing gametes for the potential recovery of degraded coral communities at age 4 years.
    The authors are grateful to Ronald de Guzman, Francis Kenith Adolfo,and Renato Adolfo for the field and hatchery assistance.This study was supported by a grant from the Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development of the Department of Science and Technology to PCC. The authors are also grateful to Prof. Peter Harrison for providing CAL a research assistantship opportunity and for additional logistical support through an Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development.
  • Thumbnail Image
    Nearshore to offshore trends in plankton assemblage and stable isotopes in reefs of the West Philippine Sea
    Yñiguez, Aletta T.; Apego, Gianina Cassandra May; Mendoza, Norman; Gomez, Norchel Corcia; Jacinto, Gil S. (Frontiers Media SA, 2022-01-25)
    Coral reefs are typified by their benthic components, and reef diversity and productivity are traditionally ascribed to the symbiotic association between corals and zooxanthellae, and other macroalgal forms. Less understood is the role of plankton and adjacent pelagic areas in contributing to reef productivity. Half of the reef benthos are filter or particle feeders, while a significant proportion of reef fishes are planktivorous. These organisms can serve as bridges between adjacent oceanic areas to the reef proper, and the pelagic and benthic realm. Here, we investigate the plankton trophic dynamics in two reef systems in the West Philippine Sea. Physico-chemical data, phytoplankton and mesozooplankton samples were collected from stations spanning offshore to reef areas per site. These were subjected to microscopic and stable isotope analysis to determine variability in plankton distribution, phytoplankton and zooplankton interactions, and gain insights into the trophic dynamics and productivity of reefs. Results showed distinct variations in plankton biomass and assemblage from offshore to reef areas, as well as between the reef systems. Phytoplankton distributions pointed toward filtering out of cells across the fore reef and reef flat areas, while mesozooplankton distributions could be mediated more by other factors. Isotopic signatures of δ13C and δ15N indicated the influence of different nutrient sources for phytoplankton and that mesozooplankton relied only partly on phytoplankton for food in most areas of the reefs. The mesozooplankton likely also obtain food from other sources such as the microbial and detrital pathways. More in-depth spatio-temporal studies on these bentho-pelagic interactions are recommended, which can provide more robust estimates of the trophic dynamics of these reefs that are situated in important fishing grounds and key biodiversity areas.
    We thank Cesar Villanoy and the Physical Oceanography laboratory for organizing the research cruise, the Philippine Navy and the BRP Gregorio Velasquez (AGR 702) for the help in sample collection during the research expedition conducted in the Kalayaan Group of Islands in 2017. We also thank the Department of Science and Technology – Philippine Nuclear Research Institute for the collaboration in conducting the stable isotope analyses, John Kristoffer Q. Andres for identifying the zooplankton samples, and John Michael N. Aguilar for analyzing the samples for chemical parameters.
  • Iron availability modulates the response of endosymbiotic dinoflagellates to heat stress
    Reich, Hannah G.; Tu, Wan-Chen; Rodriguez, Irene B.; Chou, Yalan; Keister, Elise F.; Kemp, Dustin W.; LaJeunesse, Todd C.; Ho, Tung-Yuan (2020)
    Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef-building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe’) to limiting (50 pM Fe’) under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe′ at 26–28°C vs. 250 pM Fe′ at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga’s response to thermal stress suggests the importance of trace metals to the health of coral-algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.
  • Thumbnail Image
    Increased coral larval supply enhances recruitment for coral and fish habitat restoration
    Harrison, Peter L.; dela Cruz, Dexter W.; Cameron, Kerry A.; Cabaitan, Patrick C. (Frontiers Media SA, 2021-12-01)
    Loss of foundation reef-corals is eroding the viability of reef communities and ecosystem function in many regions globally. Coral populations are naturally resilient but when breeding corals decline, larval supply becomes limiting and natural recruitment is insufficient for maintaining or restoring depleted populations. Passive management approaches are important but in some regions they are proving inadequate for protecting reefs, therefore active additional intervention and effective coral restoration techniques are needed. Coral spawning events produce trillions of embryos that can be used for mass larval rearing and settlement on degraded but recoverable reef areas. We supplied 4.6 million Acropora tenuis larvae contained in fine mesh enclosures in situ on three degraded reef plots in the northwestern Philippines during a five day settlement period to initiate restoration. Initial mean larval settlement was very high (210.2 ± 86.4 spat per tile) on natural coral skeleton settlement tiles in the larval-enhanced plots, whereas no larvae settled on tiles in control plots. High mortality occurred during early post-settlement life stages as expected, however, juvenile coral survivorship stabilised once colonies had grown into visible-sized recruits on the reef by 10 months. Most recruits survived and grew rapidly, resulting in significantly increased rates of coral recruitment and density in larval-enhanced plots. After two years growth, mean colony size reached 11.1 ± 0.61 cm mean diameter, and colonies larger than 13 cm mean diameter were gravid and spawned, the fastest growth to reproductive size recorded for broadcast spawning corals. After three years, mean colony size reached 17 ± 1.7 cm mean diameter, with a mean density of 5.7 ± 1.25 colonies per m–2, and most colonies were sexually reproductive. Coral cover increased significantly in larval plots compared with control plots, primarily from A. tenuis recruitment and growth. Total production cost for each of the 220 colonies within the restored breeding population after three years was United States $17.80 per colony. A small but significant increase in fish abundance occurred in larval plots in 2018, with higher abundance of pomacentrids and corallivore chaetodontids coinciding with growth of A. tenuis colonies. In addition, innovative techniques for capturing coral spawn slicks and larval culture in pools in situ were successfully developed that can be scaled-up for mass production of larvae on reefs in future. These results confirm that enhancing larval supply significantly increases settlement and coral recruitment on reefs, enabling rapid re-establishment of breeding coral populations and enhancing fish abundance, even on degraded reef areas.
    We thank the Australian Centre for International Agricultural Research (ACIAR) for funding this research: grant ACIAR/FIS/2014/063 to PH, PC and J. Bennett. Thanks to ACIAR staff Chris Barlow, Ann Fleming, and Mai Alagcan for their ongoing support. Sincere thanks to the Galsim Family for use of Tanduyong Island as a field research base during the coral restoration fieldwork. We also thank staff and students at the Bolinao Marine Laboratory, Marine Science Institute, University of the Philippines, Diliman for their assistance with reef work: Elizabeth Gomez, Charlon Ligson, Rickdane Gomez and Fernando Castrence (including fish surveys), Marcos Ponce, Joey Cabasan, Sheldon Boco, Gabriel de Guzman, Albert Ponce, and Allan Abuan. We also thank Grant Cameron for field support and helping design, build and refine the prototype floating spawn catcher frames in 2016 and 2017.
  • Thumbnail Image
    Individual and interactive effects of ocean warming and acidification on adult Favites colemani
    Tañedo, Mikhael Clotilde S.; Villanueva, Ronald D.; Torres, Andrew F.; Ravago-Gotanco, Rachel; San Diego-McGlone, Maria Lourdes (Frontiers Media SA, 2021-09-09)
    Tropical coral reefs are threatened by local-scale stressors that are exacerbated by global ocean warming and acidification from the post-industrial increase of atmospheric CO2 levels. Despite their observed decline in the past four decades, little is known on how Philippine coral reefs will respond to ocean warming and acidification. This study explored individual and synergistic effects of present-day (pH 8.0, 28°C) and near-future (pH 7.7, 32°C) scenarios of ocean temperature and pH on the adult Favites colemani, a common massive reef-building coral in Bolinao-Anda, Philippines. Changes in seawater temperature drive the physiological responses of F. colemani, whereas changes in pH create an additive effect on survival, growth, and photosynthetic efficiency. Under near-future scenarios, F. colemani showed sustained photosynthetic competency despite the decline in growth rate and zooxanthellae density. F. colemani exhibited specificity with the Cladocopium clade C3u. This coral experienced lower growth rates but survived projected near-future ocean warming and acidification scenarios. Its pH-thermal stress threshold is possibly a consequence of acclimation and adaptation to local environmental conditions and past bleaching events. This research highlights the importance of examining the susceptibility and resilience of Philippine corals to climate-driven stressors for future conservation and restoration efforts in the changing ocean.
    We are grateful to the Marine Biogeochemistry Laboratory and Bolinao Marine Laboratory of the Marine Science Institute, University of the Philippines for the valuable logistical and laboratory support provided. We would also like to thank Drs. Haruko Kurihara, Atsushi Watanabe, and Toshihiro Miyajima for the design of the mass flow controller used in the experiments. This is UP-MSI contribution number 484.