Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
5 results
Search Results
- Zooxanthellae diversity and coral-symbiont associations in the Philippine archipelago: specificity and adaptability across thermal gradientsTorres, Andrew F.; Valino, Darryl Anthony M.; Ravago-Gotanco, Rachel (Frontiers Media SA, 2021-10-20)Prolonged thermal stress and high levels of solar irradiance can disrupt the coral-algal symbiosis and cause bleaching and lowered overall fitness that lead to the likely death of the cnidarian host. Adaptive bleaching and acclimatization of corals, which posits bleaching as an opportunity for the coral host to switch its currently susceptible endosymbionts to more stress-tolerant taxa, offers hope for survival of reefs amid rapidly warming oceans. In this study, we explored the diversity and distribution of coral-zooxanthellae associations in the context of geospatial patterns of sea surface temperature (SST) and thermal anomalies across the Philippine archipelago. Thermal clusters based on annual sea surface temperature means and each site’s frequency of exposure to heat stress were described using three-decade (1985–2018) remotely sensed data. Haphazard sampling of 628 coral fragments was conducted in 14 reef sites over 3 years (2015–2018). Using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and sequencing of the zooxanthellae ITS2 region, we characterized endosymbiont diversity within four reef-building coral families across archipelagic thermal regimes. Consistency in dominant Symbiodiniaceae taxon was observed in Acropora spp., Porites spp., and Heliopora coerulea. In contrast, the family Pocilloporidae (Pocillopora spp., Seriatopora spp., and Stylophora pistillata) exhibited biogeographic variability in zooxanthellae composition, concordant with inferred occurrences of sustained thermal stress. Multivariate analyses identify two broad Pocilloporidae clusters that correspond with mean SST ranges and frequency of exposure to bleaching-level thermal stress which are largely supported by ANOSIM. Differences in zooxanthellae assemblages may reflect host-specific responses to ecological or environmental gradients across biogeographic regions. Such patterns of variability provide insight and support for the adaptability and potential resilience of coral communities in geographically and oceanographically complex regions, especially amidst the increasing severity of global and local-scale stressors.This paper is dedicated to the late Ronald D. Villanueva whose contribution to the project during its inception has been invaluable. The authors thank Patrick R. Pata and the reviewers LE and RC-T for their helpful comments and suggestions, and acknowledge Hazel O. Arceo, Cesar L. Villanoy, and Maria Lourdes San Diego-McGlone for their support of this study. Eileen Peñaflor and Mariana Soppa shared key knowledge in processing satellite products. Mikhael Tañedo, Romer Albino, Emmeline Jamodiong, David Siquioco, Lovely Heyres, Rhea Luciano, Joey Cabasan, Frederico Sabban, Geminne Manzano, Clairecynth Yu, Joyce Velos, Joseph Garcia, Robert Casauay, Maryjune Cabiguin, Macy A onuevo-Arcega, Ariel Loja, Jerome Genilan, Amabelle Go, Jamie Dichaves, Elaine Saniel, and Miledel Quibilan assisted with field collections. Supporting hard coral data were provided by the DOST-PCAARRD NACRE Program and the DENR-BMB WPS and SECURE Philippine Rise Projects. This is MSI contribution number 486.
- Responses of Buluan Island turbid fringing reefs, southern Philippines to the 2016 thermal anomalyValino, Darryl Anthony M.; Baria-Rodriguez, Maria Vanessa; Dizon, Romeo M.; Aliño, Porfirio M. (Elsevier B.V., 2021-03)Coral beaching due to increasing sea surface temperature causes a decline of global reef ecosystems. Turbidity and sedimentation are localized threats that may contribute to and exacerbate the impacts of coral bleaching. Some reports show coral communities thriving in turbid conditions are resilient to bleaching-related mortality events. In the Philippines, information on the effects of turbidity and elevated levels of light attenuation on bleaching in coral assemblages is generally lacking. This study describes the response to coral bleaching of a turbid reef in Buluan Island Marine Sanctuary (BIMS), southern Philippines. Coral cover and diversity showed no changes after the bleaching event. Coral community composition and abundance in some genera were affected but the majority showed either no significant change or recovery to pre-bleaching state even with high bleaching index values. The dominance and presence of bleaching-susceptible genera even after the 2016 global bleaching event suggest that turbidity experienced in BIMS might have reduced the impact of intense irradiance on the reef. Findings from this study indicate the potential existence of turbid resilient reefs across the Philippines and recommend that they be immediately identified and protected.
- Reproductive consequences of thermal stress-induced bleaching in the giant clam Tridacna croceaSayco, Sherry Lyn G.; Alabort Pomares, Ana; Cabaitan, Patrick C.; Kurihara, Haruko (Elsevier, 2024-01)Reproduction is a fundamental process necessary for maintaining a population. However, reproductive processes are sensitive to thermal stress which can cause bleaching in reef organisms such as corals and giant clams. Here we examined the phototrophic and physiological performances, particularly the reproductive processes, in Tridacna crocea during bleaching and recovery periods. Giant clam individuals were induced to bleach at heated treatment (32-33 °C) for 16 days and allowed to recover at 28-29 °C for 35 days. The control giant clams were kept at 28-29 °C. Heated giant clams showed lower phototrophic performances (Fv/Fm and photosynthesis), but their respiration and survival were similar to control giant clams. The gonadosomatic index (GSI) was lower, and the proportion of regressive eggs (i.e., eggs that are no longer viable) was higher in heated than in control giant clams. However, heated giant clams were able to maintain their egg size. In addition, T. crocea showed recovery of phototrophic potential and color of mantle but not of their reproductive output after a month of recovery. Our results indicate that bleaching reduces the reproductive output in giant clams by disrupting their gametogenesis, such as through egg resorption, but giant clams showed potential reproductive strategy, through maintenance of their egg size, to ensure the quality of their offspring. Furthermore, one month of recovery is not sufficient to restore the normal reproductive processes in T. crocea, which may delay their population recovery after a bleaching disturbance.
- Fish and benthic communities in an offshore and well-managed coral reef after bleaching disturbance in the PhilippinesQuimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle; Gomez, Elizabeth; Sayco, Sherry Lyn; Dumalagan, Edwin E.; Siringan, Fernando P.; Conaco, Cecilia; Cabaitan, Patrick C. (Springer, 2023-08-29)Climate change is perhaps the greatest threat to coral reefs worldwide. However, there is spatial variation in the extent and severity of this disturbance, with offshore and well-managed reefs presumed to be less vulnerable to anthropogenic disturbance. Here, fish and benthic communities at the offshore and well-managed reefs of Apo Reef Natural Park, Philippines, were examined during a bleaching disturbance in 2016 and reassessed 2 (2018) and 3 years (2019) after using scuba surveys. Results showed that benthic communities varied more strongly with year attributed to changes in the benthic cover of coral. These changes were influenced by site, with some sites experiencing coral loss of 41–48%, while other sites exhibited minimal changes. Site differences in coral loss may be associated with coral cover, with sites that had high coral cover prior to bleaching incurring larger loss of coral cover. Fish communities varied more with sites and was associated with differences in the predominant benthos. The stability of fish communities with year despite coral loss may be attributed to the minimal loss of coral cover at some sites. For sites that experienced high losses of coral cover, the presence of alternative and deeper habitats may have provided shelter and food for more mobile fishes maintaining taxonomic composition within sites. This study shows that bleaching disturbance circumvents effective management, but impacts are variable even at small (≤ 3 km) spatial scales. Benthic community composition and presence of alternative habitats potentially alleviate the negative impacts of bleaching on reef fish diversity and abundance.We are grateful to the laboratory assistants F Castrence, R de Guzman, B Gabuay, R Valenzuela and K Adolfo for their assistance in the fieldwork. We thank the comments and criticisms of two anonymous reviewers that greatly improved the content of this manuscript.
- Genus and size-specific susceptibility of soft corals to 2020 bleaching event in the PhilippinesBaran, Christine; Luciano, Rhea Mae A.; Segumalian, Christine; Valino, Darryl Anthony; Baria-Rodriguez, Maria Vanessa (Taylor & Francis, 2023-05-08)Soft corals are zooxanthellate sessile animals supporting various organisms in coral reefs. However, their populations are threatened by the impacts of ocean warming. Under thermal stress conditions, soft corals may experience mild to severe bleaching which may lead to death. Understanding soft coral bleaching responses highlights the importance in predicting how populations and diversity may be affected by changing climate scenarios. In this study, we examined the bleaching responses of the three dominant soft coral genera (Lobophytum, n = 1318; Sarcophyton, n = 116; Sinularia, n = 639 colonies) in the Bolinao-Anda Reef Complex (BARC), Pangasinan, north-western Philippines during the 2020 thermal stress event in terms of genus and colony size susceptibility, and zooxanthellae density. Degree heating week (DHW) data from 1986–2020 were obtained using remotely sensed data to determine thermal anomalies in the study sites. The maximum DHW (6.3) in 2020 occurred between July–August while bleaching surveys were done during October of the same year. The percentage of bleached portions in each colony was used to determine bleaching category: no bleaching (0%), moderately bleached (1–50%) and heavily bleached (>50%). Quantification of bleaching prevalence and susceptibility of colony sizes were determined by colony count and mean diameter measurements taken from quadrat photographs in October 2020. Haphazard tissue collection (∼3 cm) in each colony of three soft coral genera per bleaching category was done to quantify zooxanthellae density. Results showed that Lobophytum colonies had the lowest bleaching prevalence (41%), followed by Sinularia (66%) and Sarcophyton (78%). All colony size classes of the three genera were susceptible to bleaching. However, smaller colonies of Lobophytum (<15 cm), Sarcophyton (<5 cm) and Sinularia (<5 cm) showed less susceptibility than large colonies. Zooxanthellae density was significantly reduced in moderately and heavily bleached colonies. The results of this study highlight that bleaching susceptibility is genus specific, with Sarcophyton and Sinularia being more susceptible to bleaching than Lobophytum. Smaller colonies seemed to be less susceptible to bleaching than large-sized soft corals suggesting a differential thermal stress response. Spatial variations in bleaching prevalence were also found among reef sites with varying environmental conditions and thermal stress histories. This work provided initial observations on how bleaching affects soft corals. Further studies on soft coral community recovery are recommended to fully understand how these organisms perform after thermal stress events.We acknowledge the Bolinao Marine Laboratory of the University of the Philippines for logistics and fieldwork assistance. Thanks to Kevin Yatco and Socorro Rodrigo for providing technical assistance in obtaining remotely sensed temperature data. Thank to Kevin Yatco and Socorro Rodrigo, and Kevin Labrador for providing technical assistance in obtaining remotely sensed temperature data and assistance in statistical analysis, respectively.