menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Clay mineral nanostructures regulate sequestration of organic carbon in typical fluvial sediments
    Song, Hongzhe; Liu, Zhifei; Lin, Baozhi; Zhao, Yulong; Siringan, Fernando P.; You, Chen-Feng (Elsevier, 2024-02-15)
    The association between clay minerals and organic carbon is pivotal for understanding transport, burial, and preservation processes of sedimentary organic carbon. However, fine-scale microscopic studies are still limited in assessing the effect of diverse clay mineral structures and properties on organic carbon sequestration. In this study, we employed X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy coupled with energy dispersive spectroscopy and electron energy loss spectroscopy analyses to investigate the nanoscale interaction between clay minerals and organic carbon of two typical fluvial sediment samples with contrasting clay mineral compositions and organic carbon origins. Sample from Taiwan shows abundant illite and chlorite with petrogenic organic carbon, while sample from Luzon has significant smectite with pedogenic organic carbon. We observed that the nanostructure of the clay minerals controls the distribution of organic carbon. In the Luzon sample, the organic carbon is tightly associated with smectite, occupying expandable interlayer spaces. In the Taiwan sample, however, the organic carbon is primarily confined on the surface and edge of illite. These findings offer valuable insights into the selective association of organic carbon with clay minerals and underscore the role of clay mineral nanolayer structures in governing the occurrence and preservation of organic carbon in sediments. A comprehensive understanding of these interactions is crucial for accurate assessments of carbon cycling and sequestration in the natural environment.
    We sincerely thank Shunai Che and Lu Han for their help in TEM experiments and data processing. We thank Editor Dr. Andrew Hursthouse for handling the manuscript and two anonymous reviewers for their constructive comments on the early version of this paper. This work was supported by the National Natural Science Foundation of China (42130407, 42188102, 42306066) and the Interdisciplinary Project of Tongji University (ZD-22-202102).
  • Thumbnail Image
    Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
    Ray, Raghab; Suwa, Rempei; Miyajima, Toshihiro; Munar, Jeffrey; Yoshikai, Masaya; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo (Copernicus GmbH, 2023-03-03)
    Among the many ecosystem services provided by mangroves, the sequestration of large amounts of organic carbon (OC) in marine ecosystems (also known as “blue carbon”) has given these unique ecological environments enormous global attention. While there are many studies on the blue carbon potential of intact mangroves (i.e., naturally growing), there have been very few studies on restored mangroves (i.e., planted). This study aims to address this knowledge gap by examining the sediment development process during the early colonization (rehabilitation) of mangroves in an OC-poor estuary in Panay Island, Philippines. Based on source apportionment of multiple end-members in the sedimentary organic matter, the contribution of mangrove plant material was higher at the older sites compared to the younger sites or bare sediments where there is a higher contribution of riverine input. A clear increasing gradient according to mangrove development was observed for bulk OC (0.06–3.4 µ mol g−1, porewater OC (292–2150 µmol L−1, sedimentary OC stocks (3.13–77.4 Mg C ha−1), and OC loading per surface area (7–223 µmol m−2). The estimated carbon accumulation rates (6–33 mol m−2 yr−1) based on chronosequence are within the global ranges and show an increasing pattern with the age of mangroves. Hence, the sediments of relatively young mangrove forests appear to be a significant potential C sink, and short-term chronosequence-based observations can efficiently define the importance of mangrove restoration programs as a potential carbon sequestration pathway.
    We are grateful to the Japan International Cooperation Agency (JICA) and the Japan Science and Technology Agency (JST) through the Science and Technology Research Partnership for Sustainable Development (SATREPS) program for financially supporting the project Comprehensive Assessment and Conservation of Blue Carbon Ecosystems and their Services in the Coral Triangle (Blue CARES). We thank Jesus Abad, John Michael Aguilar, Dominic Bautista, Bryan C. Hernandez, and Tsuyoshi Kanda for their assistance during field surveys. We are grateful for the overall support given to the project by the University of the Philippines, Diliman, and Aklan State University. We are thankful to our Blue CARES colleague Charissa Ferrera for the support in language edits. Finally, authors sincerely thank AE (Jack Middelburg) and the reviewers for their constructive comments that have greatly improved the revised version of the manuscript.