menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 2 of 2
  • Sargassum sp. juice as an early juvenile supplemental feed for Stichopus cf. horrens
    Ibañez, Glaiza; Cabanayan-Soy, Rona; Baure, Jerwin; Juinio-Meñez, Marie Antonette (Springer, 2022-09-28)
    The development of an efficient and low-cost feed is important to reduce the production and maintenance costs of microalgae. In this study, two experiments were conducted to evaluate the feasibility of using Sargassum sp. juice (SARG) to boost the growth and survival of post-settled Stichopus cf. horrens juveniles. Experiment 1 tested whether SARG improves growth compared with live microalgae diets, Chaetoceros calcitrans (Cc), combined Cc and Navicula ramosissima (Nr), and an unfed treatment. Experiment 2 determined the best SARG concentration—high feeding regime (HFR; 1 mL ind−1), medium (MFR; 0.5 mL ind−1), or low (LFR; 0.25 ml ind−1), relative to live microalgae Chaetoceros muelleri (CM). Juveniles in both experiments were reared for 30 days. In Experiment 1, the average daily growth rate (DGRL) of juveniles in SARG (0.04 ± 0.01 cm d−1) was the highest although not significantly different from Cc and Cc + Nr, but was significantly higher than the control. In Experiment 2, DGRL at day 14 in HFR (− 0.02 ± 0.02 cm d−1) was significantly lower than LFR (0.01 ± 0.01 cm d−1) and MFR (0.02 ± 0.02 cm d−1). Survival was higher in all SARG treatments compared with CM, while a significant decrease in feeding activity was observed in HFR by day 30. Results indicate that concentrations of 0.25–0.5 mL SARG per juvenile can boost growth and be an alternate diet for post-settled juveniles during early rearing. However, SARG alone is not sufficient to maintain growth beyond 3 weeks. With SARG feed supplementation and water quality management, the scaling-up of juvenile production of this emergent culture species can be accelerated.
    Our sincere gratitude to Mr. Tirso Catbagan and Mr. Garry Bucol for their assistance in the set-up of the experiments. We also thank Ms. Rose Angeli Rioja and Ms. JayR Gorospe for providing inputs to improve this paper. We also thank the Sea cucumber Research Team and the staff of the University of the Philippines—Marine Science Institute, Bolinao Marine Laboratory for their support and assistance during the conduct of the study.
  • Thumbnail Image
    Feeding and reproductive phenotypic traits of the sea urchin Tripneustes gratilla in seagrass beds impacted by eutrophication
    Bangi, Helen Grace P.; Juinio-Meñez, Marie Antonette (MDPI AG, 2023-07-11)
    The sea urchin Tripneustes gratilla is a major grazer and is, hence, an excellent key model organism to study to gain a better understanding of responses to changes in its habitat. We investigated whether there are significant variations in the feeding and reproductive phenotypic traits of populations from three seagrass bed sites, with respect to their proximity to fish farms in Bolinao, northwestern Philippines. We established three stations in each of the three sites: the far, the intermediate, and those near the fish farms, and compared the sea urchins’ phenotypic traits and determined whether these were related to seagrass productivity and water parameters. Regardless of the sampling period, adult sea urchins (66.92 ± 0.27 mm test diameter, TD, n = 157) from the areas intermediate and near to the fish farms had significantly lower indices of Aristotle’s lantern, gut contents, gut and gonads, and lower gonad quality (high percentage of unusual black gonads), compared to those from the far stations. Multivariate analysis showed that the smaller feeding structures and gut, lower consumption rates and lower gonad indices and quality of sea urchins in the intermediate and near fish farms were positively related to lower shoot density, leaf production and species diversity, as well as lower water movement in those stations. The larger size of the Aristotle’s lantern in the far stations was not related to food limitations. More importantly, the phenotypic variability in the feeding structures and gonads of sea urchins in the same seagrass bed provides new evidence regarding the sensitivity of this species to environmental factors that may affect variability in food quality.
    The authors are very grateful to the anonymous reviewers for providing significant comments and suggestions to improve the manuscript. They are also indebted to the following: Rene R. Rollon, for providing advice on seagrass sampling techniques; Symon Dworjanyn, for providing valuable inputs in the earlier version of this manuscript; Marilou San Diego-McGlone, for providing some water quality data in Bolinao; Charissa M. Ferrerra, for the assistance provided on the Ocean Data View mapping software; Ma Josefa R. Pante, for some statistical advice. The authors would like to thank Jay R Gorospe for reviewing and providing valuable suggestions on the revised version of the manuscript, likewise to Lambert Meñez, for critically editing the manuscript, and to Jerwin Baure for additional assistance in copy editing the manuscript. The authors are thankful to Larry Milan, Jack Rengel, Lawrence Ramoran, for assisting the authors in field sampling and laboratory processing of samples. L. Milan, Jan Noelle Rimando and Aphrodite Entoma assisted in laboratory analysis of samples, particularly in gut content analysis.