menu.header.image.unacom.logo
 

Journal Articles - UP - MSI

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50

Browse

Search Results

Now showing 1 - 2 of 2
  • Transcriptomic profiling reveals extraordinary diversity of venom peptides in unexplored predatory gastropods of the genus Clavus
    Lu, Aiping; Watkins, Maren; Li, Qing; Robinson, Samuel D.; Concepcion, Gisela; Yandell, Mark; Weng, Zhiping; Olivera, Baldomero M.; Safavi-Hemami, Helena; Fedosov, Alexander E. (Oxford University Press, 2020)
    Predatory gastropods of the superfamily Conoidea number over 12,000 living species. The evolutionary success of this lineage can be explained by the ability of conoideans to produce complex venoms for hunting, defense, and competitive interactions. Whereas venoms of cone snails (family Conidae) have become increasingly well studied, the venoms of most other conoidean lineages remain largely uncharacterized. In the present study, we present the venom gland transcriptomes of two species of the genus Clavus that belong to the family Drilliidae. Venom gland transcriptomes of two specimens of Clavus canalicularis and two specimens of Clavus davidgilmouri were analyzed, leading to the identification of a total of 1,176 putative venom peptide toxins (drillipeptides). Based on the combined evidence of secretion signal sequence identity, entire precursor similarity search (BLAST), and the orthology inference, putative Clavus toxins were assigned to 158 different gene families. The majority of identified transcripts comprise signal, pro-, mature peptide, and post-regions, with a typically short (<50 amino acids) and cysteine-rich mature peptide region. Thus, drillipeptides are structurally similar to conotoxins. However, convincing homology with known groups of Conus toxins was only detected for very few toxin families. Among these are Clavus counterparts of Conus venom insulins (drillinsulins), porins (drilliporins), and highly diversified lectins (drillilectins). The short size of most drillipeptides and structural similarity to conotoxins were unexpected, given that most related conoidean gastropod families (Terebridae and Turridae) possess longer mature peptide regions. Our findings indicate that, similar to conotoxins, drillipeptides may represent a valuable resource for future pharmacological exploration.
  • Ontogenetic variability in the diel activity pattern of the marine gastropod Cassis cornuta(Mollusca: Cassidae)
    Calle, Lala Grace; Cabaitan, Patrick C; Sayco, Sherry Lyn G; Tan, Shau Hwai; Conaco, Cecilia (Oxford University Press, 2024-01-25)
    Examining activity patterns is essential in understanding gastropod feeding and movement ecology. However, the diel activity patterns of large-bodied gastropods, such as Cassis cornuta, remain poorly studied. Here, we conducted outdoor hatchery-based experiments to examine the diel activity patterns of C. cornuta adults and juveniles under natural sunlight and photoperiod. Activities of C. cornuta, such as crawling, hunting, feeding, burrowing and resting on the substratum, were examined every hour for 3 days. Although most individuals were inactive for a greater part of the observation period, active behaviours were recorded for some individuals during both daytime and nighttime, suggesting that C. cornuta is cathemeral, as supported by a nonsignificant result from a Rayleigh's test of uniformity. A higher proportion of adult and juvenile C. cornuta were inactive, either burrowed or resting on the substratum, during the 24-h period. Peak activity time for juveniles started at 20:00, with up to 50% of individuals active, while peak activity time for adults started at 21:00, with up to 20% of active individuals. Adults spent more time resting aboveground, whereas juveniles spent more time burrowed under the sand when not feeding. Juveniles hunted more frequently and spent more time feeding compared to adults. Additionally, juveniles crawled faster and were more successful in capturing sea urchins than adults. The information on variability in the diel activity patterns and movement rates between adult and juvenile C. cornuta would allow further demographic studies, and provide insights into possible conservation strategies for this species.