Journal Articles - UP - MSI
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/50
Browse
- Individual and interactive effects of ocean warming and acidification on adult Favites colemaniTañedo, Mikhael Clotilde S.; Villanueva, Ronald D.; Torres, Andrew F.; Ravago-Gotanco, Rachel; San Diego-McGlone, Maria Lourdes (Frontiers Media SA, 2021-09-09)Tropical coral reefs are threatened by local-scale stressors that are exacerbated by global ocean warming and acidification from the post-industrial increase of atmospheric CO2 levels. Despite their observed decline in the past four decades, little is known on how Philippine coral reefs will respond to ocean warming and acidification. This study explored individual and synergistic effects of present-day (pH 8.0, 28°C) and near-future (pH 7.7, 32°C) scenarios of ocean temperature and pH on the adult Favites colemani, a common massive reef-building coral in Bolinao-Anda, Philippines. Changes in seawater temperature drive the physiological responses of F. colemani, whereas changes in pH create an additive effect on survival, growth, and photosynthetic efficiency. Under near-future scenarios, F. colemani showed sustained photosynthetic competency despite the decline in growth rate and zooxanthellae density. F. colemani exhibited specificity with the Cladocopium clade C3u. This coral experienced lower growth rates but survived projected near-future ocean warming and acidification scenarios. Its pH-thermal stress threshold is possibly a consequence of acclimation and adaptation to local environmental conditions and past bleaching events. This research highlights the importance of examining the susceptibility and resilience of Philippine corals to climate-driven stressors for future conservation and restoration efforts in the changing ocean.We are grateful to the Marine Biogeochemistry Laboratory and Bolinao Marine Laboratory of the Marine Science Institute, University of the Philippines for the valuable logistical and laboratory support provided. We would also like to thank Drs. Haruko Kurihara, Atsushi Watanabe, and Toshihiro Miyajima for the design of the mass flow controller used in the experiments. This is UP-MSI contribution number 484.
- Summer heatwave impacts on the European kelp Saccharina latissima across its latitudinal distribution gradientDiehl, Nora; Roleda, Michael Y.; Bartsch, Inka; Karsten, Ulf; Bischof, Kai (Frontiers Media SA, 2021-10-11)Kelps are important foundation species in coastal ecosystems currently experiencing pronounced shifts in their distribution patterns caused by ocean warming. While some populations found at species’ warm distribution edges have been recently observed to decline, expansions of some species have been recorded at their cold distribution edges. Reduced population resilience can contribute to kelp habitat loss, hence, understanding intraspecific variations in physiological responses across a species’ latitudinal distribution is crucial for its conservation. To investigate potential local responses of the broadly distributed kelp Saccharina latissima to marine heatwaves in summer, we collected sporophytes from five locations in Europe (Spitsbergen, Bodø, Bergen, Helgoland, Locmariaquer), including populations exposed to the coldest and warmest local temperature regimes. Meristematic tissue from sporophytes was subjected to increasing temperatures of Δ+2, Δ+4 and Δ+6°C above the respective mean summer temperatures (control, Δ±0°C) characteristic for each site. Survival and corresponding physiological and biochemical traits were analyzed. Vitality (optimum quantum yield, Fv/Fm) and growth were monitored over time and biochemical responses were measured at the end of the experiment. Growth was highest in northern and lowest in southern populations. Overall, northern populations from Spitsbergen, Bodø and Bergen were largely unaffected by increasing summer temperatures up to Δ+6°C. Conversely, sporophytes from Helgoland and Locmariaquer were markedly stressed at Δ+6°C: occurrence of tissue necrosis, reduced Fv/Fm, and a significantly elevated de-epoxidation state of the xanthophyll cycle (DPS). The variations in phlorotannins, mannitol and tissue C and N contents were independent of temperature treatments and latitudinal distribution pattern. Pronounced site-specific variability in response to increasing temperatures implies that exceeding a threshold above the mean summer temperature exclusively affect rear-edge (southernmost) populations.Abiotic temperature data used in this manuscript were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. Sampling in France was conducted in accordance with the French legislation on the Access to Genetic Resources and Benefit-Sharing. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. This study has been conducted at the Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven and at the AWIPEV Research Station in Ny-Ålesund, Svalbard. We are grateful to the station staff of AWIPEV for support and logistics and to the scientific diving teams on Spitsbergen and Helgoland for sampling. We thank A. Wagner (AWI) for sampling support on Helgoland and his support in the setting up of the experiments, and also J. Müller (University of Rostock) for running the C:N analyzer. B. Meyer-Schlosser (University of Bremen) supported sampling and pigment analyses.