menu.header.image.unacom.logo
 

Challenge 09: Skills, knowledge, and technology for all

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/26

Ocean Decade


Challenge 09:
Skills, knowledge, and technology for all



Ensure comprehensive capacity development and equitable access to data, information, knowledge and technology across all aspects of ocean science and for all stakeholders.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Mining small molecules from Teredinibacter turnerae strains isolated from Philippine Teredinidae
    Villacorta, Jamaine B.; Rodriguez, Camille V.; Peran, Jacquelyn E.; Batucan, Jeremiah D.; Concepcion, Gisela; Salvador-Reyes, Lilibeth A.; Junio, Hiyas A. (MDPI, 2022-11-21)
    Endosymbiotic relationship has played a significant role in the evolution of marine species, allowing for the development of biochemical machinery for the synthesis of diverse metabolites. In this work, we explore the chemical space of exogenous compounds from shipworm endosymbionts using LC-MS-based metabolomics. Priority T. turnerae strains (1022X.S.1B.7A, 991H.S.0A.06B, 1675L.S.0A.01) that displayed antimicrobial activity, isolated from shipworms collected from several sites in the Philippines were cultured, and fractionated extracts were subjected for profiling using ultrahigh-performance liquid chromatography with high-resolution mass spectrometry quadrupole time-of-flight mass analyzer (UHPLC-HRMS QTOF). T. turnerae T7901 was used as a reference microorganism for dereplication analysis. Tandem MS data were analyzed through the Global Natural Products Social (GNPS) molecular networking, which resulted to 93 clusters with more than two nodes, leading to four putatively annotated clusters: lipids, lysophosphatidylethanolamines, cyclic dipeptides, and rhamnolipids. Additional clusters were also annotated through molecular networking with cross-reference to previous publications. Tartrolon D cluster with analogues, turnercyclamycins A and B; teredinibactin A, dechloroteredinibactin, and two other possible teredinibactin analogues; and oxylipin (E)-11-oxooctadec-12-enoic acid were putatively identified as described. Molecular networking also revealed two additional metabolite clusters, annotated as lyso-ornithine lipids and polyethers. Manual fragmentation analysis corroborated the putative identification generated from GNPS. However, some of the clusters remained unclassified due to the limited structural information on marine natural products in the public database. The result of this study, nonetheless, showed the diversity in the chemical space occupied by shipworm endosymbionts. This study also affirms the use of bioinformatics, molecular networking, and fragmentation mechanisms analysis as tools for the dereplication of high-throughput data to aid the prioritization of strains for further analysis.
    The research was completed under the supervision of the Department of Agriculture-Bureau of Fisheries and Aquatic Resources (DA-BFAR), Philippines in compliance with Prior Informed Consent (PIC) certificate requirements and all required legal instruments and regulatory issuances covering the conduct of the research. The authors would also like to acknowledge the Department of Science and Technology-funded Discovery and Development of Health Products Program (DOST-DDHP) for the LC-MS Facility of the Institute of Chemistry, University of the Philippines Diliman.
  • Thumbnail Image
    Creation of an international laboratory network towards global microplastics monitoring harmonisation
    Bakir, Adil; McGoran, Alexandra R.; Silburn, Briony; Russell, Josie; Nel, Holly; Lusher, Amy L.; Amos, Ruth; Shadrack, Ronick S.; Arnold, Shareen J.; Castillo, Cecy; Urbina, Joaquin F.; Barrientos, Eduardo; Sanchez, Henry; Pillay, Keshnee; Human, Lucienne; Swartbooi, Tarryn; Cordova, Muhammad Reza; Sani, Sofia Yuniar; Wijesinghe, T. W. A. Wasantha; Amarathunga, A. A. Deeptha; Gunasekara, Jagath; Somasiri, Sudarshana; mahatantila, Kushani; Liyanage, Sureka; Müller, Moritz; Hee, Yet Yin; Onda, Deo Florence; Jansar, Khairiatul Mardiana; Shiraz, Zana; Amir, Hana; Mayes, Andrew G. (Nature Research, 2024-06-03)
    Infrastructure is often a limiting factor in microplastics research impacting the production of scientific outputs and monitoring data. International projects are therefore required to promote collaboration and development of national and regional scientific hubs. The Commonwealth Litter Programme and the Ocean Country Partnership Programme were developed to support Global South countries to take actions on plastics entering the oceans. An international laboratory network was developed to provide the infrastructure and in country capacity to conduct the collection and processing of microplastics in environmental samples. The laboratory network was also extended to include a network developed by the University of East Anglia, UK. All the laboratories were provided with similar equipment for the collection, processing and analysis of microplastics in environmental samples. Harmonised protocols and training were also provided in country during laboratory setup to ensure comparability of quality-controlled outputs between laboratories. Such large networks are needed to produce comparable baseline and monitoring assessments.