Challenge 09: Skills, knowledge, and technology for all
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/26
Ocean Decade
Challenge 09:
Skills, knowledge, and technology for all
Ensure comprehensive capacity development and equitable access to data, information, knowledge and technology across all aspects of ocean science and for all stakeholders.
Browse
3 results
Search Results
- Manzaea minuta gen. & comb. nov. (Scytosiphonaceae, Phaeophyceae) from the tropical Northwestern Pacific OceanSantiañez, Wilfred John E.; Kogame, Kazuhiro (Philippine Journal of Systematic Biology, 2022-07-11)Recent molecular-assisted taxonomic studies on the brown algal genus Hydroclathrus has resulted in discoveries of new taxa in the family Scytosiphonaceae, both at the genus and species level. However, phylogenetic studies on Hydroclathrus based on wide geographical sampling also suggested that the genus is not monophyletic. That is, one of the recently described species Hydroclathrus minutus is consistently segregated from the Hydroclathrus main clade. We propose here to segregate H. minutus from the brown algal genus Hydroclathrus and establish the new monotypic genus Manzaea (i.e., Manzaea minuta gen. & comb. nov.) based on information on molecular phylogenetics and morpho-anatomy. Morphologically, M. minuta is similar to Hydroclathrus and Tronoella in having clathrate (net-like) and spreading thalli but is differentiated from the latter two genera in having membranous thalli that are sometimes interadhesive resulting in portions of the thallus forming amorphous clumps. Additionally, Manzaea is distinguished from both clathrate genera in having thick-walled medullary cells and short closely arranged quadriseriate plurangia. Phylogenetic analyses (Maximum Likelihood and Bayesian Inference) based on single (plastidial psaA and rbcL genes) and concatenated (cox3 + psaA + rbcL) genes showed that M. minuta is consistently segregated from the highly supported clade of Hydroclathrus species and often clustering with Tronoella and/or Rosenvingea. Our proposal further increases the diversity of monotypic genera in the Scytosiphonaceae and underscores the need to conduct further studies on tropical seaweed biodiversity.WJES thanks Dr. Gavino C. Trono, Jr. and Dr. Edna T. Ganzon-Fortes for the inspiration and encouragement to conduct seaweed biodiversity and systematics research. WJES is funded by the University of the Philippines through the Balik PhD Program of the Office of the Vice President for Academic Affairs (OVPAA-BPhD-2018-05), the University of the Philippines Diliman through the In-house research grant of the Marine Science Institute, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Government of Japan under the Monbukagakusho Scholarship Grant. WJES also acknowledges the support of the Department of Science and Technology (DOST)-Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) of the Government of the Philippines through the DOST Balik Scientist Program.
- Asterocladon ednae sp. nov. (Asterocladales, Phaeophyceae) from the PhilippinesSasagawa, Eriko; Santiañez, Wilfred John E.; Kogame, Kazuhiro (Wiley, 2022-06-21)Members of the brown algal order Asterocladales are characterized by stellate arrangement of its chloroplasts, in which a stellate configuration has a protruding central pyrenoid complex. The order is represented by the genus Asterocladon, which consists of only three species so far. Similar to other small and filamentous seaweeds, studies on Asterocladon remain scant and their diversity poorly understood. To fill this gap, we conducted molecular-assisted taxonomic studies on Asterocladon based on seven culture isolates collected from Okinawa Prefecture, Japan and Cebu, the Philippines. One culture isolate from the Philippines was revealed to be a new species of Asterocladon based on morpho-anatomical and molecular analyses using rbcL and psaA genes and is described here as Asterocladon ednae. The other isolates were attributed to A. rhodochortonoides. A. ednae was most closely related to A. rhodochortonoides in morphology and molecular phylogeny but was distinguished from the latter by its elongately ellipsoid plurilocular sporangia. This is the first report of the genus and species A. ednae in the Philippines, further increasing the diversity of seaweeds in the country.
- Trans-Arctic asymmetries, melting pots and weak species cohesion in the low-dispersal amphiboreal seaweed Fucus distichusNeiva, João; Assis, Jorge; Fragkopoulou, Eliza; Pearson, Gareth A.; Raimondi, Peter T.; Anderson, Laura; Krause-Jensen, Dorte; Marbà, Núria; Want, Andrew; Selivanova, Olga; Nakaoka, Masahiro; Grant, W. Stewart; Konar, Brenda; Roleda, Michael Y.; Sejr, Mikael K.; Paulino, Cristina; Serrão, Ester A. (Frontiers Media SA, 2024-04-18)Amphiboreal taxa are often composed of vicariant phylogroups and species complexes whose divergence and phylogeographic affinities reflect a shared history of chronic isolation and episodic trans-Arctic dispersal. Ecological filters and shifting selective pressures may also promote selective sweeps, niche shifts and ecological speciation during colonization, but these are seldom considered at biogeographical scales. Here we integrate genetic data and Ecologic Niche Models (ENMs) to investigate the historical biogeography and cohesion of the polymorphic rockweed Fucus distichus throughout its immense amphiboreal range, focusing on trans-Arctic asymmetries, glacial/interglacial dynamics, and integrity of sympatric eco-morphotypes. Populations were sampled throughout the Pacific and the Atlantic, from southern rear-edges to the high-Arctic. They were genotyped for seven microsatellites and an mtDNA spacer, and genetic diversity and structure were assessed from global to local scales. ENMs were used to compare niche divergence and magnitude of post-glacial range shifts in Pacific versus Atlantic sub-ranges. Haplotypic and genotypic data revealed distinct and seemingly isolated Pacific vs Arctic/Atlantic gene-pools, with finer-scale regional sub-structuring pervasive in the Pacific. MtDNA diversity was highly structured and overwhelmingly concentrated in the Pacific. Regionally, Alaska showed the highest intra-population diversity but the lowest levels of endemism. Some sympatric/parapatric ecotypes exhibited distinct genotypic/haplotypic compositions. Strikingly, niche models revealed higher Pacific tolerance to maximum temperatures and predicted a much more consolidated presence in the NE Atlantic. Glacial and modern ranges overlapped extensively in the Pacific, whereas the modern Atlantic range was largely glaciated or emerged during the Last Glacial Maximum. Higher genetic and ecogeographic diversity supports a primary Pacific diversification and secondary Atlantic colonization, also likely reflecting the much larger and more stable climatic refugia in the Pacific. The relic distribution and reduced ecological/morphological plasticity in the NE Atlantic are hypothesized to reflect functional trans-Arctic bottlenecks, recent colonization or competition with congeners. Within the Pacific, Alaska showed signatures of a post-glacial melting pot of eastern and southern populations. Genetic/ecotypic variation was generally not sufficiently discontinuous or consistent to justify recognizing multiple taxonomic entities, but support a separate species in the eastern Pacific, at the southern rear-edge. We predict that layered patterns of phylogeographic structure, incipient speciation and niche differences might be common among widespread low-dispersal amphiboreal taxa.The authors thank Marta Valente (CCMAR), André Silva and Diogo Brito for sequencing and genotyping work and all the people involved in sample collection. Samples from Logy Bay were kindly collected by Kyle R. Millar. DK-J and NM thank Hurtigruten’s FRAM cruise for help with sampling along the Greenland west coast. Greenland sampling was also connected with campaigns for the MarineBasis component of the Greenland Ecosystem Monitoring (GEM) Programme in Nuuk and Young Sound, which is acknowledged.