menu.header.image.unacom.logo
 

Challenge 04: Develop a sustainable and equitable ocean economy

Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/23

Ocean Decade


Challenge 04:
Develop a sustainable and equitable ocean economy



Generate knowledge, support innovation and multi-sectoral partnerships and develop solutions for equitable, resilient and sustainable development of the ocean economy under changing environmental, social and climate conditions.

Browse

Search Results

Now showing 1 - 3 of 3
  • Sargassum sp. juice as an early juvenile supplemental feed for Stichopus cf. horrens
    Ibañez, Glaiza; Cabanayan-Soy, Rona; Baure, Jerwin; Juinio-Meñez, Marie Antonette (Springer, 2022-09-28)
    The development of an efficient and low-cost feed is important to reduce the production and maintenance costs of microalgae. In this study, two experiments were conducted to evaluate the feasibility of using Sargassum sp. juice (SARG) to boost the growth and survival of post-settled Stichopus cf. horrens juveniles. Experiment 1 tested whether SARG improves growth compared with live microalgae diets, Chaetoceros calcitrans (Cc), combined Cc and Navicula ramosissima (Nr), and an unfed treatment. Experiment 2 determined the best SARG concentration—high feeding regime (HFR; 1 mL ind−1), medium (MFR; 0.5 mL ind−1), or low (LFR; 0.25 ml ind−1), relative to live microalgae Chaetoceros muelleri (CM). Juveniles in both experiments were reared for 30 days. In Experiment 1, the average daily growth rate (DGRL) of juveniles in SARG (0.04 ± 0.01 cm d−1) was the highest although not significantly different from Cc and Cc + Nr, but was significantly higher than the control. In Experiment 2, DGRL at day 14 in HFR (− 0.02 ± 0.02 cm d−1) was significantly lower than LFR (0.01 ± 0.01 cm d−1) and MFR (0.02 ± 0.02 cm d−1). Survival was higher in all SARG treatments compared with CM, while a significant decrease in feeding activity was observed in HFR by day 30. Results indicate that concentrations of 0.25–0.5 mL SARG per juvenile can boost growth and be an alternate diet for post-settled juveniles during early rearing. However, SARG alone is not sufficient to maintain growth beyond 3 weeks. With SARG feed supplementation and water quality management, the scaling-up of juvenile production of this emergent culture species can be accelerated.
    Our sincere gratitude to Mr. Tirso Catbagan and Mr. Garry Bucol for their assistance in the set-up of the experiments. We also thank Ms. Rose Angeli Rioja and Ms. JayR Gorospe for providing inputs to improve this paper. We also thank the Sea cucumber Research Team and the staff of the University of the Philippines—Marine Science Institute, Bolinao Marine Laboratory for their support and assistance during the conduct of the study.
  • Genetic diversity of Kappaphycus malesianus (Solieriaceae, Rhodophyta) from the Philippines
    Dumilag, Richard V.; Crisostomo, Bea A.; Aguinaldo, Zae-Zae A.; Lluisma, Arturo O.; Gachon, Claire M.M.; Roleda, Michael Y. (Elsevier, 2023-07)
    Kappaphycus farming for carrageenan production is characterized by a strong selective pressure at the genetic level. Traits of agronomic importance are compromised due to domestication bottlenecks and the subsequent events of possible selective breeding of founding cultivars. Kappaphycus malesianus is farmed in Malaysia and the Philippines, and is distributed within the Malesian region. While the majority of genetically characterized specimens of this species are from Malaysia, those from the Philippines are poorly explored. Here, we assessed the genetic diversity of K. malesianus from the Philippines based on cox1 sequences. Of the 15 identified haplotypes, 14 specimens represent three novel haplotypes (wild specimens) that form a group distinct from the main clade comprising most K. malesianus haplotypes known to date. An additional haplotype from a cultivated specimen was identical to that of the most widely distributed haplotype. Our findings demonstrate that the K. malesianus is genetically more diverse than previously recognized. It is expected that higher genetic diversity may be revealed through additional sampling from a wider geographic range and careful application of integrative approaches. Future selective breeding programs in Kappaphycus would benefit from the incorporation of the genetic resources, as provided in this study.
  • Thumbnail Image
    Seaweed as a resilient food solution after a nuclear war
    Jehn, Florian Ulrich; Dingal, Farrah Jasmine; Mill, Aron; Harrison, Cheryl; Ilin, Ekaterina; Roleda, Michael Y.; James, Scott C.; Denkenberger, David (American Geophysical Union, 2024-01-09)
    Abrupt sunlight reduction scenarios such as a nuclear winter caused by the burning of cities in a nuclear war, an asteroid/comet impact or an eruption of a large volcano inject large amounts of particles in the atmosphere, which limit sunlight. This could decimate agriculture as it is practiced today. We therefore need resilient food sources for such an event. One promising candidate is seaweed, as it can grow quickly in a wide range of environmental conditions. To explore the feasibility of seaweed after nuclear war, we simulate the growth of seaweed on a global scale using an empirical model based on Gracilaria tikvahiae forced by nuclear winter climate simulations. We assess how quickly global seaweed production could be scaled to provide a significant fraction of global food demand. We find seaweed can be grown in tropical oceans, even after nuclear war. The simulated growth is high enough to allow a scale up to an equivalent of 45% of the global human food demand (spread among food, animal feed, and biofuels) in around 9–14 months, while only using a small fraction of the global ocean area. The main limiting factor being the speed at which new seaweed farms can be built. The results also show that the growth of seaweed increases with the severity of the nuclear war, as more nutrients become available due to increased vertical mixing. This means that seaweed has the potential to be a viable resilient food source for abrupt sunlight reduction scenarios.