Challenge 04: Develop a sustainable and equitable ocean economy
Permanent URI for this collectionhttps://repository.unesco.gov.ph/handle/123456789/23
Ocean Decade
Challenge 04:
Develop a sustainable and equitable ocean economy
Generate knowledge, support innovation and multi-sectoral partnerships and develop solutions for equitable, resilient and sustainable development of the ocean economy under changing environmental, social and climate conditions.
Browse
2 results
Search Results
- The complete mitochondrial genome of a wild-collected Kappaphycus malesianus (Solieriaceae, Rhodophyta)Crisostomo, Bea A.; Dumilag, Richard V.; Roleda, Michael Y.; Lluisma, Arturo O. (Taylor & Francis, 2023-03-04)Kappaphycus malesianus is a red seaweed farmed primarily for its carrageenan, a polysaccharide important in the food and pharmaceutical industries. Among the commercially cultivated Kappaphycus species, only K. malesianus has no mitogenome data available. Here, we assembled the mitochondrial genome of K. malesianus from next-generation sequencing data. The circular mitogenome consisted of 25,250 base pairs (bp) with a GC content of 30.25%. These values were comparable to previously sequenced solieriacean mitogenomes. Structural features, such as the stem-loop and hairpin, which were previously reported in other rhodophytes mitochondrial DNA, were also identified. The annotated genes (24 protein-coding genes, 24 tRNA genes, and 2 rRNA genes) were arranged in an order similar to the other available solieriacean mitogenomes. Lastly, phylogenetic analysis using 23 predicted protein domains showed the sister relationship of K. malesianus with other Kappaphycus species.The authors are grateful to Z.-Z. Aguinaldo, S. Damsik, and J. Turong for aiding during laboratory and field works. The authors also acknowledge the LGU of Sitangkai, Tawi-Tawi for granting permission for the collection activities. This is contribution no. 495 from the University of the Philippines the Marine Science Institute (UPMSI), Diliman, Quezon City.
- Seaweed as a resilient food solution after a nuclear warJehn, Florian Ulrich; Dingal, Farrah Jasmine; Mill, Aron; Harrison, Cheryl; Ilin, Ekaterina; Roleda, Michael Y.; James, Scott C.; Denkenberger, David (American Geophysical Union, 2024-01-09)Abrupt sunlight reduction scenarios such as a nuclear winter caused by the burning of cities in a nuclear war, an asteroid/comet impact or an eruption of a large volcano inject large amounts of particles in the atmosphere, which limit sunlight. This could decimate agriculture as it is practiced today. We therefore need resilient food sources for such an event. One promising candidate is seaweed, as it can grow quickly in a wide range of environmental conditions. To explore the feasibility of seaweed after nuclear war, we simulate the growth of seaweed on a global scale using an empirical model based on Gracilaria tikvahiae forced by nuclear winter climate simulations. We assess how quickly global seaweed production could be scaled to provide a significant fraction of global food demand. We find seaweed can be grown in tropical oceans, even after nuclear war. The simulated growth is high enough to allow a scale up to an equivalent of 45% of the global human food demand (spread among food, animal feed, and biofuels) in around 9–14 months, while only using a small fraction of the global ocean area. The main limiting factor being the speed at which new seaweed farms can be built. The results also show that the growth of seaweed increases with the severity of the nuclear war, as more nutrients become available due to increased vertical mixing. This means that seaweed has the potential to be a viable resilient food source for abrupt sunlight reduction scenarios.