menu.header.image.unacom.logo
 

00. Ocean Decade - Philippines

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/7

The UNACOM Online and Digital Enabling Library and Index is developed to support the alignment of research, investments, and community initiatives toward contributing to a well-functioning, productive, resilient, sustainable, and inspiring ocean. The goal is to enable the government, partner agencies, and UNESCO to develop more robust Science-Informed Policies and facilitate a stronger Science-Policy Interface through the gathered data, information, and knowledge related to the Ocean Decade in the Philippines.

Particularly, it aims to:
  • Gather and index all publications, reports, policies, laws, legislations, articles, and other documents of the Philippine National Committee on Marine Sciences (NCMS) related to the Ocean Decade.
  • Disseminate and promote these publications, reports, policies, and other documents on the initiatives and actions to address the Ocean Decade challenges.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Co-occurrence of a marine heatwave and a reported tomato jellyfish (Crambione mastigophora Maas, 1903) bloom in March 2020 at El Nido, Palawan, Philippines
    Quilestino-Olario, Raven; Concolis, Brenna Mei M.; Atup, Dale Patrick D.; Cortes, Aiza; Yñiguez, Aletta T.; Edullantes, Brisneve (The Plankton Society of Japan/The Japanese Association of Benthology, 2023-05-31)
    Globally, observations on marine species during marine heatwaves (MHWs) help outline the scope of the MHW’s possible biological effects. In line with this effort, this paper presents a 2020 MHW that coincided with a reported ‘tomato jellyfish’ (Crambione mastigophora Maas, 1903) bloom on 23 March 2020 in the Corong-Corong Bay of Palawan, Philippines. Detecting a moderate MHW from 21 March to 04 April 2020, the analysis of sea surface temperatures revealed that most areas surrounding the bloom site attained their peak positive anomalies on the same day as the reported bloom. Certain physical mechanisms present in the first quarter of 2020 may have played a role in the occurrence of both events: the presence of cyclonic eddies and parallel monsoonal winds alongshore can induce upwelling which promotes biological productivity in surface waters, while the observed weakening of winds have been associated with anomalous warming of the sea surface. Further studies are still highly recommended to determine the exact causes of the jellyfish bloom and what conditions make it more likely to happen during MHWs. However, if the C. mastigophora is hypothetically able to continually bloom amidst warming temperatures, the increasing trend of MHW frequency and intensity in the West Philippine Sea (where the reported bloom site is situated) may consequently yield more future co-occurrences. This paper aims to hopefully contribute to the existing knowledge of possible biological impacts associated with extreme marine events, especially in the Philippine context where both jellyfish blooms and MHWs are understudied.
    The authors would like to express sincere gratitude to the anonymous reviewers whose comments and suggestions helped improve and clarify this manuscript. The authors would also like to thank Mr. Alimar Amor for his permission on the still photos in Figs 1c and 1d from his recorded jellyfish bloom video on 23 March 2020. This paper is also made through the funding of DOST̶ Philippine Council for Industry, Energy, and Emerging Technology Research and Development under the Survey of Heatwaves in the Philippine Seas project (DOST Project No. 9615).