menu.header.image.unacom.logo
 

00. Ocean Decade - Philippines

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/7

The UNACOM Online and Digital Enabling Library and Index is developed to support the alignment of research, investments, and community initiatives toward contributing to a well-functioning, productive, resilient, sustainable, and inspiring ocean. The goal is to enable the government, partner agencies, and UNESCO to develop more robust Science-Informed Policies and facilitate a stronger Science-Policy Interface through the gathered data, information, and knowledge related to the Ocean Decade in the Philippines.

Particularly, it aims to:
  • Gather and index all publications, reports, policies, laws, legislations, articles, and other documents of the Philippine National Committee on Marine Sciences (NCMS) related to the Ocean Decade.
  • Disseminate and promote these publications, reports, policies, and other documents on the initiatives and actions to address the Ocean Decade challenges.

Browse

Search Results

Now showing 1 - 10 of 18
  • Nitrite regeneration in the oligotrophic Atlantic Ocean
    Clark, Darren R.; Rees, Andrew P.; Ferrera, Charissa M.; Al-Moosawi, Lisa; Somerfield, Paul J.; Harris, Carolyn; Quartly, Graham D.; Goult, Stephen; Tarran, Glen; Lessin, Gennadi (Copernicus GmbH, 2022-03-07)
    The recycling of scarce nutrient resources in the sunlit open ocean is crucial to ecosystem function. Nitrification directs ammonium (NH4+) derived from organic matter decomposition towards the regeneration of nitrate (NO3-), an important resource for photosynthetic primary producers. However, the technical challenge of making nitrification rate measurements in oligotrophic conditions combined with the remote nature of these environments means that data availability, and the understanding that provides, is limited. This study reports nitrite (NO2-) regeneration rate (RNO2 – the first product of nitrification derived from NH4+ oxidation) over a 13 000 km transect within the photic zone of the Atlantic Ocean. These measurements, at relatively high resolution (order 300 km), permit the examination of interactions between RNO2 and environmental conditions that may warrant explicit development in model descriptions. At all locations we report measurable RNO2 with significant variability between and within Atlantic provinces. Statistical analysis indicated significant correlative structure between RNO2 and ecosystem variables, explaining ∼65 % of the data variability. Differences between sampling depths were of the same magnitude as or greater than horizontally resolved differences, identifying distinct biogeochemical niches between depth horizons. The best overall match between RNO2 and environmental variables combined chlorophyll-a concentration, light-phase duration, and silicate concentration (representing a short-term tracer of water column physical instability). On this basis we hypothesize that RNO2 is related to the short-term autotrophic production and heterotrophic decomposition of dissolved organic nitrogen (DON), which regenerates NH4+ and supports NH4+ oxidation. However, this did not explain the observation that RNO2 in the deep euphotic zone was significantly greater in the Southern Hemisphere compared to the Northern Hemisphere. We present the complimentary hypothesis that observations reflect the difference in DON concentration supplied by lateral transport into the gyre interior from the Atlantic's eastern boundary upwelling ecosystems.
    We thank the crew of the AMT19 cruise. MSLA data were obtained and analysed through the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS), and further data were provided by the European Space Agency's Sea Level CCI. This is contribution number 320 of the AMT program supported by UKRI through the National Capability Long-term Single Centre Science Programme, Climate Linked Atlantic Sector Science program and further from the Natural Environment Research Council funded Microbial Carbon Pump project. We would like to thank Dennis Hansell and two anonymous reviewers for constructive and insightful comments.
  • Estimation of the vertical phytoplankton distribution in the Philippine Sea: Influence of turbulence following passage of typhoons
    Cordero-Bailey, Kristina S.A.; Almo, Aldwin T.; David, Laura T.; Yñiguez, Aletta T. (Elsevier, 2022-11)
    The subsurface chlorophyll-a maximum (SCM) is a phenomenon that contributes significantly to the total primary production of the open ocean but it is not observable from remote sensing, thus primary production based on satellite information is highly underestimated. In a highly dynamic region such as the Philippine Sea, turbulence caused by tropical storms may exert significant impact on the SCM feature. In this study, we attempt to estimate the vertical phytoplankton profile in the Philippine Sea from remote sensing images by applying a generic quantitative approach. Generalized Additive Models (GAM) followed by Generalized Linear Models (GLMs) were used create predictive equations between response variables (Chl-a profile parameters) and predictor variables (RS parameters). GAM was able to predict integrated Chl-a biomass using photosynthetic active radiation (PAR), wind speed and wind stress, the depth of the Chl-a peak using surface Chl-a, wind speed and wind stress, and the baseline Chl-a concentration using sea surface temperature, sea surface salinity and PAR. GLM found wind stress and wind speed as significant predictors for integrated Chl-a biomass, while surface Chl-a, wind speed and wind stress were significant predictors for depth of the Chl-a peak. When the predictive equations were applied to 2020 monthly satellite images, they were seen to adequately estimate the offshore spatial distribution of the two Chl-a parameters. Increased turbulence due to high wind speed and wind stress during passage of tropical storms was seen to result in shallowing of the SCM and subsequent increase in Chl-a within the water column. These equations could be refined if long-term observational data was available. The capacity to estimate vertical distribution of primary productivity in the Philippines provides a means to better understand fisheries productivity and biogeochemical cycling in the region.
  • Seasonality of standing crop of a Sargassum (Fucales, Phaeophyta) bed in Bolinao, Pangasinan, Philippines
    Trono, Gavino C.; Lluisma, Arturo O. (Springer, 1990-09)
    The seasonality of standing crop of a Sargassum bed was investigated by conducting monthly sampling from February 1988 to July 1989. Environmental parameters of water movement, salinity, number of daytime minus tides, and water temperature were also measured. An intra-annual pattern of variation in standing crop of Sargassum crassifolium, S. cristaefolium, S. oligocystum, and S. polycystum was observed. Standing crop was generally lowest in February, March, April, or May, and highest in November through January. Sargassum accounted for about 35 to 85% of the monthly algal standing crop of the bed, and the observed variation in overall standing crop of the bed generally reflected the standing crop of Sargassum. The seasonality of the standing crops of the associated algal divisions also followed an annual cycle, but their maximum and minimum standing crops did not coincide with those of Sargassum. Individually, as well as collectively, the standing crops of the Sargassum spp. were poorly correlated with the environmental factors observed.
  • Submerged reef features in Apo and Tubbataha Reefs, Philippines, revealed paleo sea-level history during the last deglaciation
    Munar, Jeffrey C.; Aurelio, Mario A.; Dumalagan, Edwin E.; Tinacba, Erin Joy C.; Doctor, Ma. Angelique A.; Siringan, Fernando P. (Springer, 2024-02-27)
    The morphology of coral reefs provides an effective benchmark of past sea levels because of their limited vertical range of formation and good geologic preservation. In this study, we analyze the seafloor morphology around two atolls in the Philippines: Tubbataha Reef, in Palawan, and Apo Reef, in Occidental Mindoro. High-resolution multibeam bathymetry to a depth of 200 m reveals seafloor features including reef ridges and staircase-like terraces and scarps. Depth profiles across the reefs show terraces formed within six and seven depth ranges in Tubbataha Reef and in Apo Reef, respectively. These were further observed through a remotely operated vehicle. The terraces and scarps are interpreted as backstepping reefs that were drowned during an overall rise in sea level from the Last Glacial Maximum (LGM). Terraces are used as indicators of paleo sea level and the separation between terraces as the magnitude of sea-level rises coeval with meltwater pulse events during the last deglaciation. The pattern for both Apo and Tubbataha reefs indicates subsidence, consistent with the absence of Holocene emergent features and their atoll morphologies. Subsidence of up to 17 m since the LGM in Apo Reef is mainly attributed to the downbowing of the crust toward Manila Trench. In Tubbataha Reef, subsidence of up to 14 m is attributed to the continuous cooling of the volcanic crust underlying the atoll. These can be used to fill gaps in the tectonic history of the study sites from the last deglaciation.
    This study was funded by the Department of Science and Technology–Philippine Council for Agriculture, Aquatic and Natural Resources Research Development (DOST-PCARRD) Geophysical Coral Mapping Project and Acquisition of Detailed Bathymetry for Coastal Erosion Management Project both under F. P. Siringan, and National Assessment of Coral Reef Environment (NACRE) Project under Hazel Arceo. We would like to mention, in particular, Dominic Jone Cabactulan, Timothy Quimpo, Ronald Olavides, Mary Ann Calleja, Patrick Cabaitan, and Cesar Villanoy who were members of the project team. We thank the Tubbataha Management Office, Sablayan Local Government Unit, and Department of Environment and Natural Resources for the work permits and logistical help during the surveys.
  • Short-term exposure to independent and combined acidification and warming elicits differential responses from two tropical seagrass-associated invertebrate grazers
    Baure, Jerwin G.; Roleda, Michael Y.; Juinio-Meñez, Marie Antonette (Springer, 2023-08-10)
    Ocean acidification and warming could affect animal physiology, key trophic interactions and ecosystem functioning in the long term. This study investigates the effects of four pH−temperature combination treatments simulating ocean acidification (OA), ocean warming (OW) and combined OA and OW conditions (FUTURE) relative to ambient present-day conditions (PRESENT) on the grazing of the juveniles of two seagrass-associated invertebrates namely the sea cucumber Stichopus cf. horrens and topshell Trochus maculatus over a 5-day exposure period. Diel and feeding activity of both species increased under OW and FUTURE to some extent, while the nighttime activity of Trochus but not Stichopus decreased under OA relative to PRESENT during the first 2 days. Fecal production of Stichopus did not differ among treatments, while the lowest fecal production of Trochus was observed under OA during the first 24 h of grazing. These responses suggest that Trochus may be initially more sensitive to OA compared with Stichopus. Interestingly, fecal production of Trochus in FUTURE was significantly higher than OA, suggesting that warming may ameliorate the negative effect of acidification. Diel activity, feeding and fecal production after 5 days did not differ among treatments for both species, suggesting acclimation to the acute changes in temperature and pH after a few days, although Stichopus acclimated rapidly than Trochus. The ability of the two juvenile invertebrate grazers to rapidly acclimate to increased temperature and lowered pH conditions after short-term exposure may favor their survival under projected changes in ocean conditions.
    This work was supported by the Department of Science and Technology–Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development under Grant QMSR-MRRD-MEC-295-1449. The authors would like to thank Dr. Ian Enochs for his invaluable help in improving this paper. We also thank Tirso Catbagan, Garry Bucol, Rona Soy and Tomilyn Jan Garpa for their assistance during the conduct of this study. We would also like to thank the Marine Biogeochemistry Laboratory of the UP Marine Science Institute for their assistance in analyzing our water samples as well as the DNA Barcoding Laboratory of the UP Institute of Biology for the species identification of our animals.
  • Ocean mapping and other marine activities of the National Mapping and Resource Information Authority (NAMRIA)
    Carandang, Efren P. (Philippine Council for Aquatic and Marine Research and Development, 2002)
    This paper describes the various marine activities being undertaken by the National Mapping and Resource Information Authority (NAMRIA) pursuant to its mandate as the central surveying, mapping and resource information agency of the government. NAMRIA gathers marine data through periodic hydrographic and oceanographic surveys and remote sensing techniques, and publishes the results in the form of nautical charts, bathymetric maps and other thematic maps. It also creates marine geographic information systems and databases. As steward of the National Oceanographic Data Center (NODC), the agency participates in international oceanographic data exchange programs, and also serves the marine data and information needs of the local marine science community. NAMRIA's data collection capability got a big boost with the acquisition this year of two multi-disciplinary survey vessels with state-of-the-art systems. With these vessels as platforms, NAMRIA will embark on the comprehensive charting of the Exclusive Economic Zone, and collaborate with the different marine science agencies in the conduct of multi-disciplinary oceanographic cruises.
  • Reproductive consequences of thermal stress-induced bleaching in the giant clam Tridacna crocea
    Sayco, Sherry Lyn G.; Alabort Pomares, Ana; Cabaitan, Patrick C.; Kurihara, Haruko (Elsevier, 2024-01)
    Reproduction is a fundamental process necessary for maintaining a population. However, reproductive processes are sensitive to thermal stress which can cause bleaching in reef organisms such as corals and giant clams. Here we examined the phototrophic and physiological performances, particularly the reproductive processes, in Tridacna crocea during bleaching and recovery periods. Giant clam individuals were induced to bleach at heated treatment (32-33 °C) for 16 days and allowed to recover at 28-29 °C for 35 days. The control giant clams were kept at 28-29 °C. Heated giant clams showed lower phototrophic performances (Fv/Fm and photosynthesis), but their respiration and survival were similar to control giant clams. The gonadosomatic index (GSI) was lower, and the proportion of regressive eggs (i.e., eggs that are no longer viable) was higher in heated than in control giant clams. However, heated giant clams were able to maintain their egg size. In addition, T. crocea showed recovery of phototrophic potential and color of mantle but not of their reproductive output after a month of recovery. Our results indicate that bleaching reduces the reproductive output in giant clams by disrupting their gametogenesis, such as through egg resorption, but giant clams showed potential reproductive strategy, through maintenance of their egg size, to ensure the quality of their offspring. Furthermore, one month of recovery is not sufficient to restore the normal reproductive processes in T. crocea, which may delay their population recovery after a bleaching disturbance.
  • Defending Philippine maritime territory and marine resources: Initiatives and problems
    Carranza, Ruben R., Jr. (Philippine Council for Aquatic and Marine Research and Development, 2002)
    The significance of the Philippines' maritime territory and the complexities of its defense are examined. The speaker highlights the integral role of the country's waters in trade, food security, and resource provision. Challenges, including naval limitations and maritime intrusions, are presented, followed by a discussion of defense strategies like selective sea control. The speech concludes with a call for decisive policy actions, diplomatic solutions to territorial conflicts, and improved capabilities to safeguard the nation's maritime interests.
  • Contrasting reproductive strategies between stress-tolerant and competitive coral taxa
    Bonilla, K. G.; Guest, J. R.; Baria-Rodriguez, M. V. (Springer, 2023-04-19)
    Reproductive traits such as fecundity (i.e., the number of gametes produced) and the size and age of coral colonies at reproductive onset can vary in predictable ways among life history strategies. However, most studies on the onset of reproductive maturity in corals only report the presence or absence of oocytes with little known about variation in fecundity across size and age classes. This study aimed to determine the colony size and fecundity at the onset of reproductive maturity across size classes of two scleractinian corals with contrasting life history strategies, Acropora millepora (competitive) and Favites colemani (stress-tolerant). Colonies at a site in northwestern Philippines were sampled to determine the smallest colony size class with mature oocytes and to estimate fecundity across size classes. Histological slides were also prepared to verify the presence of mature gametes. Colonies were able to produce mature oocytes when they had attained colony diameters of 4.7 cm for A. millepora and 1.5 cm for F. colemani. A. millepora had lower fecundity, but larger oocytes compared to F. colemani. Although small colonies can contribute to the larval pool, the proportion of mature colonies increased for larger size classes, suggesting that larger colonies make a disproportionately greater contribution to population reproductive output. These findings contribute to our understanding of coral population dynamics, particularly in parameterizing population and demographic models for different coral life histories.
    We are grateful to Christine Baran, Jue Alef Lalas, Jerry Arboleda, Gabriel de Guzman, the students and research assistants of Community and Ecology and Interactions of Marine Bionts and Benthic Ecosystems Laboratories for their valuable assistance during field and laboratory works, Darryl Valino for the site map, and Liam Lachs for the assistance on the statistical analyses. This research was supported by the University of the Philippines Marine Science Institute’s In-house project, Department of Science and Technology – ASTHRDP Thesis Grant, and University of the Philippines – Office of the Vice President for Academic Affairs’ Balik Ph.D. project (OVPAA-BPhD-2018-02).
  • Characteristics of marine heatwaves in the Philippines
    Edullantes, Brisneve; Concolis, Brenna Mei M.; Quilestino-Olario, Raven; Atup, Dale Patrick D.; Cortes, Aiza; Yñiguez, Aletta T. (Elsevier, 2023-09)
    Marine Heatwaves (MHWs) are prolonged, discrete, and anomalously warm events, which have recently gained global attention due to their far-reaching effects and reported impacts. Although intensive studies have been carried out at global and regional scales, these events remained understudied in the Philippines – a country with high marine biodiversity. The Philippines is highly vulnerable to the impacts of these extreme events as it lies in the western boundary of the Pacific that is considered as a hotspot for MHWs. The present study used multi-year climatic sea surface temperature (SST) record to detect MHWs in the Philippines. The detected events were then characterized using the standardized metrics. Linear trend analysis was conducted to determine the magnitude and direction of the change of the MHW metrics over time. Decadal trend revealed that MHWs in the Philippines significantly increased from seven MHWs in the 1980s to 37 MHWs in the last decade. Moreover, increased duration was remarkable in 2020 with 276 MHW days. MHW frequency and duration were increasing at a rate almost twice as its neighboring waters. Intensities did not significantly increase with time, but the highest SST anomaly is associated with El Niño Southern Oscillation. Furthermore, the eastern and western region of the Philippines is vulnerable to MHWs, but hotspots are mostly confined in the West Philippine Sea and western tropical Pacific. An in-depth investigation of the drivers of MHWs is recommended to understand the physical mechanisms of the development of these extreme thermal events in the Philippine seas. The findings have significant implications for coastal marine resource management, highlighting the need for adaptive management strategies and increased monitoring and research efforts to mitigate the impacts of MHWs on marine ecosystems and local economies in the Philippines.