menu.header.image.unacom.logo
 

00. Ocean Decade - Philippines

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/7

The UNACOM Online and Digital Enabling Library and Index is developed to support the alignment of research, investments, and community initiatives toward contributing to a well-functioning, productive, resilient, sustainable, and inspiring ocean. The goal is to enable the government, partner agencies, and UNESCO to develop more robust Science-Informed Policies and facilitate a stronger Science-Policy Interface through the gathered data, information, and knowledge related to the Ocean Decade in the Philippines.

Particularly, it aims to:
  • Gather and index all publications, reports, policies, laws, legislations, articles, and other documents of the Philippine National Committee on Marine Sciences (NCMS) related to the Ocean Decade.
  • Disseminate and promote these publications, reports, policies, and other documents on the initiatives and actions to address the Ocean Decade challenges.

Browse

Search Results

Now showing 1 - 2 of 2
  • Seasonality of standing crop of a Sargassum (Fucales, Phaeophyta) bed in Bolinao, Pangasinan, Philippines
    Trono, Gavino C.; Lluisma, Arturo O. (Springer, 1990-09)
    The seasonality of standing crop of a Sargassum bed was investigated by conducting monthly sampling from February 1988 to July 1989. Environmental parameters of water movement, salinity, number of daytime minus tides, and water temperature were also measured. An intra-annual pattern of variation in standing crop of Sargassum crassifolium, S. cristaefolium, S. oligocystum, and S. polycystum was observed. Standing crop was generally lowest in February, March, April, or May, and highest in November through January. Sargassum accounted for about 35 to 85% of the monthly algal standing crop of the bed, and the observed variation in overall standing crop of the bed generally reflected the standing crop of Sargassum. The seasonality of the standing crops of the associated algal divisions also followed an annual cycle, but their maximum and minimum standing crops did not coincide with those of Sargassum. Individually, as well as collectively, the standing crops of the Sargassum spp. were poorly correlated with the environmental factors observed.
  • Thumbnail Image
    Sea surface carbonate dynamics at reefs of Bolinao, Philippines: Seasonal variation and fish mariculture-induced forcing
    Isah, Raffi R.; Enochs, Ian C.; San Diego-McGlone, Maria Lourdes (Frontiers, 2022-11-11)
    Coral reefs are vulnerable to global ocean acidification (OA) and local human activities will continue to exacerbate coastal OA. In Bolinao, Philippines, intense unregulated fish mariculture has resulted in regional eutrophication. In order to examine the coastal acidification associated with this activity and the impact on nearby coral reefs, water quality and carbonate chemistry parameters were measured at three reef sites, a mariculture site and an offshore, minimally impacted control site during both the wet and dry season. Additionally, benthic community composition was characterized at reef sites, and both autonomous carbonate chemistry sampling and high-frequency pH measurements were used to characterize fine-scale (diel) temporal variability. Water quality was found to be poorer at all reefs during the wet season, when there was stronger outflow of waters from the mariculture area. Carbonate chemistry parameters differed significantly across the reef flat and between seasons, with more acidic conditions occurring during the dry season and increased primary production suppressing further acidification during the wet season. Significant relationships of both total alkalinity (TA) and dissolved inorganic carbon (DIC) with salinity across all stations may imply outflow of acidified water originating from the mariculture area where pH values as low as 7.78 were measured. This apparent mariculture-induced coastal acidification was likely due to organic matter respiration as sustained mariculture will continue to deliver organic matter. While TA-DIC vector diagrams indicate greater contribution of net primary production, net calcification potential in the nearest reef to mariculture area may already be diminished. The two farther reefs, characterized by higher coral cover, indicates healthier ecosystem functioning. Here we show that unregulated fish mariculture activities can lead to localized acidification and impact reef health. As these conditions at times approximate those projected to occur globally due to OA, our results may provide insight into reef persistence potential worldwide. These results also underscore the importance of coastal acidification and indicate that actions taken to mitigate OA on coral reefs should address not only global CO2 emissions but also local perturbations, in this case fish mariculture-induced eutrophication.
    This paper is part of the master’s thesis of RI supervised by MS-M entitled “Carbonate chemistry dynamics on the Bolinao reef flat”. The authors are grateful to the Marine Biogeochemistry Laboratory and Bolinao Marine Laboratory of the Marine Science Institute, University of the Philippines for the valuable logistical and laboratory support provided. We thank Jay Burce, Ryan Carl Magyaya, Natasha Tamayo for their tremendous help in field activities and laboratory analyses. We thank Alice Webb for providing insights into improving the manuscript.