menu.header.image.unacom.logo
 

00. Ocean Decade - Philippines

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/7

The UNACOM Online and Digital Enabling Library and Index is developed to support the alignment of research, investments, and community initiatives toward contributing to a well-functioning, productive, resilient, sustainable, and inspiring ocean. The goal is to enable the government, partner agencies, and UNESCO to develop more robust Science-Informed Policies and facilitate a stronger Science-Policy Interface through the gathered data, information, and knowledge related to the Ocean Decade in the Philippines.

Particularly, it aims to:
  • Gather and index all publications, reports, policies, laws, legislations, articles, and other documents of the Philippine National Committee on Marine Sciences (NCMS) related to the Ocean Decade.
  • Disseminate and promote these publications, reports, policies, and other documents on the initiatives and actions to address the Ocean Decade challenges.

Browse

Search Results

Now showing 1 - 10 of 79
  • Juvenile scleractinian assemblage and its association with adults and benthos at shallow and upper mesophotic depths in fringing and atoll reefs in the Philippines
    Albelda, Ritzelle L.; Cabaitan, Patrick C.; Sinniger, Frederic P.; Dumalagan, Edwin Jr; Quimpo, Timothy Joseph R.; Olavides, Ronald Dionnie D.; Munar, Jeffrey C.; Villanoy, Cesar L.; Siringan, Fernando (Elsevier B.V, 2020-10-15)
    The juvenile stage is a critical part of a scleractinian’s life history as it is when they are highly vulnerable to various post-settlement mortality processes, which influence the structure of adult scleractinian assemblages. Although numerous studies have been done to understand dynamics of juvenile assemblages at shallow water reefs (SWRs), similar studies on deeper and less explored reefs, such as mesophotic coral ecosystems (MCEs) remain limited. Using diver-based photo-quadrat method, we aimed to examine how juvenile scleractinian assemblages vary from SWRs (shallow: 3 to 10 m and middle: 10 to 20 m) to upper MCEs (deep: 30 to 40 m) in the fringing and atoll reefs in the Apo Reef Natural Park, Philippines. We also aimed to understand the potential association of juvenile scleractinian densities with adult scleractinian densities and benthic cover. A total of 12 families were recorded for both juveniles and adults with Poritidae being the most abundant, followed by Pocilloporidae and Acroporidae (and Merulinidae for juveniles only). Juvenile densities (ranging from 14 to 36 individuals/m2) varied among depth zone and reef type interactions and had a bimodal distribution, with the middle zone having the lowest density compared to the shallow and deep zones. Juvenile densities were correlated to benthic cover, particularly to high algal cover in the middle zone and availability of bare hard substrate in the shallow zone. Adult densities were also correlated with juvenile densities, but not commonly in the middle zone, emphasizing that it is only one of the many variables that contribute to juvenile assemblages. This study is the first to document juvenile scleractinian assemblages, how they vary from SWRs to MCEs in the Philippines and the Coral Triangle, and demonstrates the importance of benthos and adult brood stock in shaping juvenile scleractinian assemblages across depth zones.
  • Fish farm effluents alter reef benthic assemblages and reduce coral settlement
    Quimpo, Timothy Joseph R.; Ligson, Charlon A.; Manogan, Dana P.; Requilme, Jeremiah Noelle; Albelda, Ritzelle L.; Conaco, Cecilia; Cabaitan, Patrick C. (Elsevier Ltd., 2020)
    Fish farming in coastal areas is a rapidly growing industry. However, unregulated fish farming practices that release massive amounts of unconsumed feed and fecal material into the water column, can result in a nutrient enriched environment that extends to nearby reef systems. To understand the impact of fish farm effluent on coral settlement, we tested the settlement rate of Pocillopora acuta larvae on artificial substrates conditioned for 12 weeks at three sites with increasing distance (2–10 km) from fish farms in Bolinao, Philippines. Sites far from the fish farms had higher biofilm and crustose coralline algae cover. In contrast, the site closest to the fish farms, where nutrient levels were higher, had greater sediment and turf algae cover. Tiles conditioned at the farther sites promoted higher (6–8%) larval settlement whereas tiles from the nearer site had lower settlement (3%). These findings show that fish farm effluents can indirectly affect coral settlement on adjacent reefs by promoting growth of other biota that may inhibit larval settlement and by reducing the availability of suitable substrate.
  • Thumbnail Image
    Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta
    Matriano, Danielle M.; Alegado, Rosanna A.; Conaco, Cecilia (Springer, 2021-03-16)
    Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome—evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.
    We thank Joshua Dizon and Francis Tablizo of the Philippine Genome Center Core Facility for Bioinformatics for assistance with scripts and database construction. We thank Becca Lensing (University of Hawai’i), Cheryl Andam (University of New Hampshire), Deo Onda and Ron Leonard Dy (University of the Philippines) for insightful comments and suggestions on the analysis and interpretation of the data. This work was supported by thesis grants from the Department of Science and Technology Accelerated Science and Technology Human Resource Development Program-National Science Consortium (DOST-ASTHRDP-NSC) and the University of the Philippines Marine Science Institute to DM.
  • Thumbnail Image
    Sexual reproduction in the soft coral Lobophytum schoedei in Bolinao‐Anda Reef Complex, Pangasinan, northwestern Philippines
    Baran, Christine C.; Baria‐Rodriguez, Maria Vanessa (Wiley, 2021-04-02)
    The characterization of early life-history strategies of soft corals is important in understanding population maintenance, replenishment, and recovery in disturbed coral reefs. This study examined the sexual reproduction of the soft coral Lobophytum schoedei in the Bolinao-Anda Reef Complex (BARC), a degraded reef in northwestern Philippines. Reproductive strategies such as sexuality, sex ratio, fecundity, and reproductive timing were examined. Random colonies of L. schoedei were sampled a few weeks before the predicted time of spawning to assess fecundity (n = 73 colonies), and sexuality and sex ratio (n = 221 colonies). Monthly sampling of tagged colonies of L. schoedei (n = 20) was done over 13 months to determine the reproductive timing through polyp dissection. Peak of annual spawning was inferred based on the presence of large gametes and their absence in the next sampling period. Results showed that L. schoedei is a gonochoric broadcast spawner with 1:1.1 sex ratio. Although oogenesis and spermatogenesis exhibited overlapping cycles, both gametes matured and spawned in April, coinciding with increasing sea surface temperature. Prior to spawning, oocytes and spermaries ranged 300–633 µm and 150–337 µm in diameter, respectively. Mean female fecundity was 6.7 ± 3.9 oocytes per polyp and male fecundity was 39.2 ± 22.5 (±SD) spermaries per polyp. Some of these results, including the low number of oocytes produced by female polyps, may be caused by sexual reproduction in a degraded reef environment. Understanding these reproductive traits may be useful for predicting the resiliency of populations of L. schoedei in response to ongoing and future environmental change.
  • Thecal tabulation, body scale morphology and phylogeny of Heterocapsa philippinensis sp. nov. (Peridiniales, Dinophyceae) from the Philippines
    Benico, Garry; Lum, Wai Mun; Takahashi, Kazuya; Yñiguez, Aletta T.; Iwataki, Mitsunori (Elsevier, 2021-08)
    The thecal tabulation and body scale structure of the marine armoured dinoflagellate Heterocapsa, isolated from Philippines, were examined using LM, SEM and TEM, and its phylogenetic position was inferred from ITS and LSU rDNA sequences. Cells were ovoid and the plate tabulation (Po, cp, X, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′) was consistent with most Heterocapsa species. The second anterior intercalary plate (2a) had a circular pattern with a thick marginal border free of pores. The nucleus was longitudinally elongated and curved, and located at the dorsal side of the cell. Discoid lobes of brownish chloroplast were peripherally distributed, and a pyrenoid was positioned at the centre. The triradiate body scales, measuring 250–300 nm in diameter, consisted of a roundish basal plate with six radiating ridges, nine peripheral uprights/spines, and three radiating spines. These components were identical to those of H. pseudotriquetra and H. steinii, except for the roundish outline of basal plate. Molecular phylogeny showed that the species clustered with H. pseudotriquetra and H. steinii. This species was differentiated from all other Heterocapsa species in the sausage-shaped nucleus and circular pattern on the 2a plate. This study proposed a novel species Heterocapsa philippinensis sp. nov. for the isolate.
  • Thumbnail Image
    Spatial planning insights for Philippine coral reef conservation using larval connectivity networks
    Pata, Patrick R.; Yñiguez, Aletta T. (Frontiers Media SA, 2021-10-06)
    The marine habitats of the Philippines are recognized to be some of the most biodiverse systems globally yet only 1.7% of its seas are designated as marine protected areas (MPAs) with varying levels of implementation. Many of these MPAs were established based on local-scale conservation and fisheries objectives without considering larger-scale ecological connections. The connectivity of reefs through larval dispersal is important in the regional-scale resilience against anthropogenic disturbances and is considered a significant criterion in planning for MPAs. In this study, we provide insights into the delineation of ecologically connected MPA networks using larval dispersal modeling and network analysis. We characterized the network properties of the Philippine coral reefs, organized as 252 reef nodes, based on the larval connectivity networks of a branching coral, sea urchin, and grouper. We then evaluated the distribution of the existing 1,060 MPAs relative to the connectivity patterns. All reef nodes were found to be highly interconnected with a mean shortest path ranging from 1.96 to 4.06. Reef nodes were then ranked according to their relative importance in regional connectivity based on five connectivity indices. Despite the between-organism and between-index variability in rankings, there were reefs nodes, mostly located offshore and at major straits, which consistently ranked high. We found that the distribution of existing MPAs partially capture some of the regional connectivity functions but there is a spatial mismatch between the primarily coastal MPAs and the high-ranking reef nodes. Furthermore, network partitioning identified subnetworks and dispersal barriers. The existing MPAs were found to be disproportionately distributed to a few subnetworks and that the largest subnetworks do not contain the greatest number of MPAs. Considering these gaps, we suggest expanding the coverage of protected areas especially in underrepresented reef networks to meaningfully capture national-scale connectivity and meet global conservation objectives.
    We would like to thank Dr. Vera Horigue and Andrew Torres for constructive comments and suggestions during the early versions of this paper. We also thank the members of the Biological Oceanography and Modeling of Ecosystems (BiOME) Laboratory who assisted in running model simulations.
  • Nitrite regeneration in the oligotrophic Atlantic Ocean
    Clark, Darren R.; Rees, Andrew P.; Ferrera, Charissa M.; Al-Moosawi, Lisa; Somerfield, Paul J.; Harris, Carolyn; Quartly, Graham D.; Goult, Stephen; Tarran, Glen; Lessin, Gennadi (Copernicus GmbH, 2022-03-07)
    The recycling of scarce nutrient resources in the sunlit open ocean is crucial to ecosystem function. Nitrification directs ammonium (NH4+) derived from organic matter decomposition towards the regeneration of nitrate (NO3-), an important resource for photosynthetic primary producers. However, the technical challenge of making nitrification rate measurements in oligotrophic conditions combined with the remote nature of these environments means that data availability, and the understanding that provides, is limited. This study reports nitrite (NO2-) regeneration rate (RNO2 – the first product of nitrification derived from NH4+ oxidation) over a 13 000 km transect within the photic zone of the Atlantic Ocean. These measurements, at relatively high resolution (order 300 km), permit the examination of interactions between RNO2 and environmental conditions that may warrant explicit development in model descriptions. At all locations we report measurable RNO2 with significant variability between and within Atlantic provinces. Statistical analysis indicated significant correlative structure between RNO2 and ecosystem variables, explaining ∼65 % of the data variability. Differences between sampling depths were of the same magnitude as or greater than horizontally resolved differences, identifying distinct biogeochemical niches between depth horizons. The best overall match between RNO2 and environmental variables combined chlorophyll-a concentration, light-phase duration, and silicate concentration (representing a short-term tracer of water column physical instability). On this basis we hypothesize that RNO2 is related to the short-term autotrophic production and heterotrophic decomposition of dissolved organic nitrogen (DON), which regenerates NH4+ and supports NH4+ oxidation. However, this did not explain the observation that RNO2 in the deep euphotic zone was significantly greater in the Southern Hemisphere compared to the Northern Hemisphere. We present the complimentary hypothesis that observations reflect the difference in DON concentration supplied by lateral transport into the gyre interior from the Atlantic's eastern boundary upwelling ecosystems.
    We thank the crew of the AMT19 cruise. MSLA data were obtained and analysed through the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS), and further data were provided by the European Space Agency's Sea Level CCI. This is contribution number 320 of the AMT program supported by UKRI through the National Capability Long-term Single Centre Science Programme, Climate Linked Atlantic Sector Science program and further from the Natural Environment Research Council funded Microbial Carbon Pump project. We would like to thank Dennis Hansell and two anonymous reviewers for constructive and insightful comments.
  • Vulnerability drivers for small pelagics and milkfish aquaculture value chain determined through online participatory approach
    Macusi, Edison D.; Geronimo, Rollan C.; Santos, Mudjekeewis D. (Elsevier, 2021-11)
    Climate change impacts on the fisheries can be short-term or long-term, making them highly vulnerable. Fishers' vulnerability encompasses several factors and includes, among others, their sensitivity, exposure to the elements, and their adaptive capacity. The main aim of this study was to help develop a vulnerability assessment tool that can be applied in the various nodes of the fisheries and aquaculture value chains with a long-term view of enhancing the resilience of the fisheries and helping increase the adaptive capacity of the fishing communities. A participatory technique using online workshops was conducted together with various stakeholders (N = 214) who gave insights and suggested indicators that drive climate change impacts and vulnerability. Based on the online workshops conducted, the common hazards/drivers were increasing temperature, typhoons, flooding (sea-level rise), and the recent pandemic, which consequently destroy coral reef ecosystems, affect fisheries yield, increases fish mortality, damage boats, fishing gears, pens, cages, pond dikes, erode beach properties, and devastate houses. In association with these impacts, mobility, travel, processing, and logistic operations are severely reduced. In the human dimension, the fishers and fish farmers are directly affected in terms of income loss, destroyed fishing gears, nutritional deficiencies and health impacts, less fishing operations, early or reduced harvest yield, and low market value of products. In the adaptation options, the infrastructure, social, economic, awareness/knowledge, and relevant governance/policy dimensions are needed to address and help mitigate various climate change impacts.
  • Manzaea minuta gen. & comb. nov. (Scytosiphonaceae, Phaeophyceae) from the tropical Northwestern Pacific Ocean
    Santiañez, Wilfred John E.; Kogame, Kazuhiro (Philippine Journal of Systematic Biology, 2022-07-11)
    Recent molecular-assisted taxonomic studies on the brown algal genus Hydroclathrus has resulted in discoveries of new taxa in the family Scytosiphonaceae, both at the genus and species level. However, phylogenetic studies on Hydroclathrus based on wide geographical sampling also suggested that the genus is not monophyletic. That is, one of the recently described species Hydroclathrus minutus is consistently segregated from the Hydroclathrus main clade. We propose here to segregate H. minutus from the brown algal genus Hydroclathrus and establish the new monotypic genus Manzaea (i.e., Manzaea minuta gen. & comb. nov.) based on information on molecular phylogenetics and morpho-anatomy. Morphologically, M. minuta is similar to Hydroclathrus and Tronoella in having clathrate (net-like) and spreading thalli but is differentiated from the latter two genera in having membranous thalli that are sometimes interadhesive resulting in portions of the thallus forming amorphous clumps. Additionally, Manzaea is distinguished from both clathrate genera in having thick-walled medullary cells and short closely arranged quadriseriate plurangia. Phylogenetic analyses (Maximum Likelihood and Bayesian Inference) based on single (plastidial psaA and rbcL genes) and concatenated (cox3 + psaA + rbcL) genes showed that M. minuta is consistently segregated from the highly supported clade of Hydroclathrus species and often clustering with Tronoella and/or Rosenvingea. Our proposal further increases the diversity of monotypic genera in the Scytosiphonaceae and underscores the need to conduct further studies on tropical seaweed biodiversity.
    WJES thanks Dr. Gavino C. Trono, Jr. and Dr. Edna T. Ganzon-Fortes for the inspiration and encouragement to conduct seaweed biodiversity and systematics research. WJES is funded by the University of the Philippines through the Balik PhD Program of the Office of the Vice President for Academic Affairs (OVPAA-BPhD-2018-05), the University of the Philippines Diliman through the In-house research grant of the Marine Science Institute, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Government of Japan under the Monbukagakusho Scholarship Grant. WJES also acknowledges the support of the Department of Science and Technology (DOST)-Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) of the Government of the Philippines through the DOST Balik Scientist Program.
  • Thumbnail Image
    Two hidden mtDNA-clades of crown-of-thorns starfish in the Pacific Ocean
    Yasuda, Nina; Inoue, Jun; Hall, Michael R.; Nair, Manoj R.; Adjeroud, Mehdi; Fortes, Miguel D.; Nishida, Mutsumi; Tuivavalagi, Nat; Ravago-Gotanco, Rachel; Forsman, Zac H.; Soliman, Taha; Koyanagi, Ryo; Hisata, Kanako; Motti, Cherie A.; Satoh, Noriyuki (Frontiers Media SA, 2022-04-27)
    Recurring outbreaks of crown-of-thorns starfish (COTS) severely damage healthy corals, especially in the Western Pacific Ocean. To obtain a better understanding of population genetics of COTS and historical colonization across the Pacific Ocean, complete mitochondrial genomes were sequenced from 243 individuals collected in 11 reef regions. Our results indicate that Pacific COTS (Acanthaster cf. solaris) comprise two major clades, an East-Central Pacific (ECP) clade and a Pan-Pacific (PP) clade, separation of which was supported by high bootstrap value. The ECP clade consists of COTS from French Polynesia, Fiji, Vanuatu and the Great Barrier Reef (GBR). The Hawaii population is unique within this clade, while California COTS are included in EPC clade. On the other hand, the PP clade comprises multiple lineages that contain COTS from Vietnam, the Philippines, Japan, Papua New Guinea, Micronesia, the Marshall Islands, GBR, Vanuatu, Fiji and French Polynesia. For example, a lineage of the PP clade, which has the largest geographic distribution, includes COTS from all of these locations. These results suggest two alternative histories of current geographic distributions of COTS in the Pacific Ocean, an ECP clade ancestry or Western Pacific clade ancestry. Although further questions remain to be explored, this discovery provides an evolutionary context for the interpretation of COTS population structure which will aid future coral reef research in the Pacific Ocean, and ultimately improve reef management of COTS.
    We thank the following people for their help with sample collection: Dr. Hugh Sweatman and the AIMS Bioresources Library for GBR samples, Dr. Molly Timmers for Hawaiian samples, Geoff Jones and Jeff Kinch for Papua New Guinean samples, Monal Lal for Fijian samples, Christina Shaw for Vanuatu samples, Hoang Dinh Chieu for Vietnamese samples, and Hiromitsu Ueno for Japanese samples. The DNA Sequencing Section and IT section of OIST are acknowledged for its expert help with genome sequencing and bioinfomatic analysis. Last, but not least, we acknowledge the traditional owners of the lands and sea country on which this research took place.