menu.header.image.unacom.logo
 

00. Ocean Decade - Philippines

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/7

The UNACOM Online and Digital Enabling Library and Index is developed to support the alignment of research, investments, and community initiatives toward contributing to a well-functioning, productive, resilient, sustainable, and inspiring ocean. The goal is to enable the government, partner agencies, and UNESCO to develop more robust Science-Informed Policies and facilitate a stronger Science-Policy Interface through the gathered data, information, and knowledge related to the Ocean Decade in the Philippines.

Particularly, it aims to:
  • Gather and index all publications, reports, policies, laws, legislations, articles, and other documents of the Philippine National Committee on Marine Sciences (NCMS) related to the Ocean Decade.
  • Disseminate and promote these publications, reports, policies, and other documents on the initiatives and actions to address the Ocean Decade challenges.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Gene networks governing the response of a calcareous sponge to future ocean conditions reveal lineage-specific XBP1 regulation of the unfolded protein response
    Posadas, Niño; Conaco, Cecilia (John Wiley and Sons, 2024)
    Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.