11. University of the Philippines - Marine Science Institute (UP - MSI)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/10
University of the Philippines - Marine Science Institute (UP - MSI) - Philippines - contributions to address the Ocean Decade Challenges
Browse
2 results
Search Results
- Decadal stability in coral cover could mask hidden changes on reefs in the East Asian SeasChan, Y. K. S.; Affendi, Y. A.; Ang, P. O.; Baria-Rodriguez, M. V.; Chen, C. A.; Chui, A. P. Y.; Glue, M.; Huang, H.; Kuo, C-Y.; Kim, S. W.; Lam, V. Y. Y.; Lane, D. J. W.; Lian, J. S.; Lin, S. M. N. N.; Lunn, Z.; Nañola, C. L.; Nguyen, V. L.; Park, H. S.; Sutthacheep, M.; Vo, S. T.; Vibol, O.; Waheed, Z.; Yamano, H.; Yeemin, T.; Yong, E.; Kimura, T.; Tun, K.; Chou, L. M.; Huang, D. (Springer, 2023-06-10)Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
- Sea surface carbonate dynamics at reefs of Bolinao, Philippines: Seasonal variation and fish mariculture-induced forcingIsah, Raffi R.; Enochs, Ian C.; San Diego-McGlone, Maria Lourdes (Frontiers, 2022-11-11)Coral reefs are vulnerable to global ocean acidification (OA) and local human activities will continue to exacerbate coastal OA. In Bolinao, Philippines, intense unregulated fish mariculture has resulted in regional eutrophication. In order to examine the coastal acidification associated with this activity and the impact on nearby coral reefs, water quality and carbonate chemistry parameters were measured at three reef sites, a mariculture site and an offshore, minimally impacted control site during both the wet and dry season. Additionally, benthic community composition was characterized at reef sites, and both autonomous carbonate chemistry sampling and high-frequency pH measurements were used to characterize fine-scale (diel) temporal variability. Water quality was found to be poorer at all reefs during the wet season, when there was stronger outflow of waters from the mariculture area. Carbonate chemistry parameters differed significantly across the reef flat and between seasons, with more acidic conditions occurring during the dry season and increased primary production suppressing further acidification during the wet season. Significant relationships of both total alkalinity (TA) and dissolved inorganic carbon (DIC) with salinity across all stations may imply outflow of acidified water originating from the mariculture area where pH values as low as 7.78 were measured. This apparent mariculture-induced coastal acidification was likely due to organic matter respiration as sustained mariculture will continue to deliver organic matter. While TA-DIC vector diagrams indicate greater contribution of net primary production, net calcification potential in the nearest reef to mariculture area may already be diminished. The two farther reefs, characterized by higher coral cover, indicates healthier ecosystem functioning. Here we show that unregulated fish mariculture activities can lead to localized acidification and impact reef health. As these conditions at times approximate those projected to occur globally due to OA, our results may provide insight into reef persistence potential worldwide. These results also underscore the importance of coastal acidification and indicate that actions taken to mitigate OA on coral reefs should address not only global CO2 emissions but also local perturbations, in this case fish mariculture-induced eutrophication.