11. University of the Philippines - Marine Science Institute (UP - MSI)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/10
University of the Philippines - Marine Science Institute (UP - MSI) - Philippines - contributions to address the Ocean Decade Challenges
Browse
4 results
Search Results
- Genetic connectivity and diversity between tropical and subtropical populations of the tropical horned sea star Protoreaster nodosus in the northwest PacificNakajima, Yuichi; Yasuda, Nina; Matsuki, Yu; Arriesgado, Dan M.; Fortes, Miguel D.; Uy, Wilfredo H.; Campos, Wilfredo L.; Nadaoka, Kazuo; Lian, Chunlan (Springer, 2024-06-01)Seagrass beds are ecologically and economically important coastal ecosystems, and seagrass-associated organisms are a key part of their biodiversity. Marine organisms that reproduce through broadcast spawning are likely to have less genetic differentiation among populations than those that use other modes of reproduction, but this has not been well studied. Here, we investigated the genetic diversity, genetic differentiation, and migration patterns of the seagrass-associated sea star Protoreaster nodosus across 12 sites spanning approximately 2500 km from the Ryukyu Archipelago, Japan, to the Philippines. We genotyped 405 individuals by using seven microsatellite loci and analyzed allelic richness and expected heterozygosity as indices of genetic diversity. Of these two indices, only expected heterozygosity decreased slightly with increasing latitude. These results suggest that genetic diversity has not clearly decreased, even in the isolated Ryukyu Archipelago populations. Geographic distance was significantly correlated with genetic differentiation (pairwise FST: − 0.005 to 0.049). However, populations in the Ryukyu Archipelago and the Philippines showed relatively low genetic structuring and the pairwise genetic differentiation between these regions was often non-significant. Analysis of historical migration rates showed bidirectional north–south migration, which appears to be influenced by the Kuroshio Current and its countercurrents.
- Hydrodynamics rather than type of coastline shapes self‐recruitment in anemonefishesSato, Masaaki; Honda, Kentaro; Nakamura, Yohei; Bernardo, Lawrence Patrick C.; Bolisay, Klenthon O.; Yamamoto, Takahiro; Herrera, Eugene C.; Nakajima, Yuichi; Lian, Chunlan; Uy, Wilfredo H.; Fortes, Miguel D.; Nadaoka, Kazuo; Nakaoka, Masahiro (Wiley, 2023-07-25)Many marine species have a pelagic larval phase that undergo dispersal among habitats. Studies on marine larval dispersal have revealed a large variation in the spatial scale of dispersal and self-recruitment. However, few studies have investigated the influence of types of coastline (e.g., bay vs. open coast) on marine larval dispersal. Bays or lagoons generally enhance the retention of larvae, while larvae are more likely to be flushed by strong currents in open coasts. To examine associations between larval dispersal, coastline type, and hydrodynamics, we compared fin-scale dispersal patterns, self-recruitment, and local retention (LR) of two anemonefishes (Amphiprion frenatus and Amphiprion perideraion) between a semi-enclosed bay and an open coast in the Philippines combining genetic parentage analysis and biophysical dispersal modeling. Contrary to our expectations, parentage analysis revealed lower estimates of self-recruitment in the semi-closed bay (0%) than in the open coast (14–15%). The result was consistent with dispersal simulations predicting lower LR and self-recruitment in the semi-closed bay (0.4% and 19%) compared to the open coast (2.9% and 38%). Dispersal modeling also showed that cross-shore currents toward offshore were much stronger around the semi-closed bay and were negatively correlated with LR and self-recruitment. These results suggest that stronger cross-shore currents around the semi-closed bay transport anemonefish larvae to the offshore and mainly contributed to the lower self-recruitment. Our results highlight importance of hydrodynamics on larval dispersal and difficulty in predicting self-recruitment from coastline type alone.
- Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forestRay, Raghab; Suwa, Rempei; Miyajima, Toshihiro; Munar, Jeffrey; Yoshikai, Masaya; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo (Copernicus GmbH, 2023-03-03)Among the many ecosystem services provided by mangroves, the sequestration of large amounts of organic carbon (OC) in marine ecosystems (also known as “blue carbon”) has given these unique ecological environments enormous global attention. While there are many studies on the blue carbon potential of intact mangroves (i.e., naturally growing), there have been very few studies on restored mangroves (i.e., planted). This study aims to address this knowledge gap by examining the sediment development process during the early colonization (rehabilitation) of mangroves in an OC-poor estuary in Panay Island, Philippines. Based on source apportionment of multiple end-members in the sedimentary organic matter, the contribution of mangrove plant material was higher at the older sites compared to the younger sites or bare sediments where there is a higher contribution of riverine input. A clear increasing gradient according to mangrove development was observed for bulk OC (0.06–3.4 µ mol g−1, porewater OC (292–2150 µmol L−1, sedimentary OC stocks (3.13–77.4 Mg C ha−1), and OC loading per surface area (7–223 µmol m−2). The estimated carbon accumulation rates (6–33 mol m−2 yr−1) based on chronosequence are within the global ranges and show an increasing pattern with the age of mangroves. Hence, the sediments of relatively young mangrove forests appear to be a significant potential C sink, and short-term chronosequence-based observations can efficiently define the importance of mangrove restoration programs as a potential carbon sequestration pathway.
- 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern PhilippinesTanaka, Yoshiyuki; Go, Gay Amabelle; Watanabe, Atsushi; Miyajima, Toshihiro; Nakaoka, Masahiro; Uy, Wilfredo H.; Nadaoka, Kazuo; Watanabe, Shuichi; Fortes, Miguel D. (Elsevier, 2014)Effects of fish culture can alter the adjacent ecosystems. This study compared seagrass species compositions in 2012 with those in 1995, when fish culture was less intensive compared to 2012 in the region. Observations were conducted at the same four sites around Santiago Island, Bolinao: (1) Silaqui Island, (2) Binaballian Loob, (3) Pislatan and (4) Santa Barbara, and by using the same methods as those of Bach et al. (1998). These sites were originally selected along a siltation gradient, ranging from Site 1, the most pristine, to Site 4, a heavily silted site. By 2012, fish culture had expanded around Sites 2, 3 and 4, where chlorophyll a (Chl a) was greater in 2012 than in 1995 by one order of magnitude. Enhalus acoroides and Cymodocea serrulata, which were recorded in 1995, were no longer present at Site 4, where both siltation and nutrient load are heavy.