National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
2 results
Search Results
- Impacts of aquaculture nutrient sources: ammonium uptake of commercially important eucheumatoids depends on phosphate levelsNarvarte, Bienson Ceasar V.; Hinaloc, Lourie Ann R.; Gonzaga, Shienna Mae C.; Roleda, Michael Y. (Springer, 2023-09-14)In an integrated multitrophic aquaculture (IMTA) system, seaweeds serve as extractive species that utilize excess nutrients, thereby reducing the risk of eutrophication and promoting sustainable aquaculture. However, the use of excessive fish feeds and the resultant faecal waste as nutrient streams can contribute to variations in nitrogen and phosphorus levels (e.g., primarily NH4+ and PO4−3) in the surrounding area and this may impact the physiology of the integrated seaweeds, particularly on how these species take up inorganic nutrients. In this study, the effect of different PO4−3 levels on NH4+ uptake of the three commercially important eucheumatoids Kappaphycus alvarezii, Kappaphycus striatus and Eucheuma denticulatum was examined under laboratory conditions. Seaweed thalli (n = 4) were incubated in seawater media containing 30 µM NH4+, and 0, 0.5, 1.0, 1.5, 3.0 or 5.0 µM PO4−3 for 1 h under a saturating light level of 116 ± 7.13 µmol photons m−2 s−1 inside a temperature-controlled laboratory. Species-specific responses to PO4−3 levels were observed. For K. alvarezii, maximum NH4+ uptake (17.8 ± 1.6 µmol gDW−1 h−1) was observed at 0.5 µM PO4−3 and the uptake rate declined at higher PO4−3 levels. For K. striatus, NH4+ uptake increased with increasing PO4−3 levels, with maximum N uptake (6.35 ± 0.9 µmol gDW−1 h−1) observed at 5.0 µM PO4−3. For E. denticulatum, maximum NH4+ uptake (14.6 ± 1.4 µmol gDW−1 h−1) was observed at 1.0 µM PO4−3. Our results suggest that among the three eucheumatoid species, the NH4+ uptake of K. striatus persists even at high levels of PO4−3. However, our results also showed that K. striatus had the lowest range of NH4+ uptake rates. These results should be taken into consideration when incorporating eucheumatoids in the IMTA system, where PO4−3levels significantly vary in space and time.This is contribution no. 500 from the Marine Science Institute, University of the Philippines (UPMSI), Diliman. The AlgaE Team would like to thank the Bolinao Marine Laboratory (BML) for providing the venue to conduct our experiments. BCV Narvarte and MY Roleda acknowledge the Sea6 Energy Pvt. Ltd. for sponsorship during the 24th International Seaweed Symposium (ISS) held on February 19-24, 2023, at Hobart, Tasmania, Australia. Likewise, BCV Narvarte and LAR Hinaloc would like to thank the University of the Philippines- Office of the International Linkages (UP-OIL) for providing them with a travel grant to attend the aforementioned symposium. BCV Narvarte also acknowledges the Department of Science and Technology- Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development (DOST-PCAARRD) for his PhD Scholarship (GREAT- Graduate Research and Education Assistantship for Technology Program).
- Zamboanga stakes claim as RP’s top seaweed producer(Philippine Star Printing Co., Inc., 2008-03-23)In the face of declining seaweed harvests in the country’s traditional major seaweed production centers, the regional office of the Bureau of Fisheries and Aquatic Resources (BFAR) in Region IX has taken bold steps to intensify seaweed culture in the whole Zamboanga Peninsula. “The objectives,” says BFAR Region IX director Virgilio Alforque, “are to help stabilize seaweed supply in the country, enable seaweed processors to operate at higher capacity and, most importantly, make it possible for Zamboanga’s seaweed farmers to take advantage of prevailing high prices.” Fortunately, a new research by SEAFDEC researchers Anicia Hurtado and Renato Agbayani has shown that deep water (more than 10 meters deep) farming of the seaweeds Kappaphycus is possible and very profitable just like the other methods in shallower waters. This method in deeper waters is commonly called alul.