National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
2 results
Search Results
- Feeding ecology and trophic role of sea urchins in a tropical seagrass communityKlumpp, David W.; Salita-Espinosa, J. T.; Fortes, M. D. (Elsevier BV, 1993-04)The grazing impact of urchins on seagrass and algal resources, and the relative importance of this to the lower-level trophic flux of a tropical seagrass community were investigated. Thalassia hemprichii (Ehrenb.) Aschers. accounted for 80–93% of seagrass frond biomass at Bolinao in the Philippines. Growth rate of seagrass was 6.6 mm per shoot day−1, or 2.3 mg AFDW per shoot day−1. Production of seagrass fronds per unit area of seagrass bed varied with location from 870 to 1850 mg AFDW m−2 day−1. Urchin density ranged from 0.9 to 4.2 m−2, with Tripneustes gratilla (L.) and Salmacis sphaeroides (L.) being the most common species. Tripneustes gratilla fed mostly on attached seagrass fronds (77–89% of diet), especially Thalassia hemprichii, whereas S. sphaeroides was a generalist, consuming Thalassia hemprichii fronds (13–65%), detached seagrass debris (5–39%), the red alga Amphiroa fragilissima (L.) Lamour. (0–30%), algal-coated sediment and rubble (0–51%) in proportions that varied with the availability of preferred food types. Live Thalassia hemprichii fronds were clearly preferred over macroalgae or dead seagrass fronds by Tripneustes gratilla, but S. sphaeroides consumed all three food types without preference. Both urchins avoided the common brown alga, Sargassum crassifolium J. Agardh. Urchins absorbed 73–76% of organic matter in seagrass fronds with epiphytes (75% of DW), and 55% of that in epiphyte-free fronds. Seagrass debris and the macroalgae A. fragilissima were of lower food quality as they were lower in organic matter, and this matter was absorbed less efficiently by urchins. Rates of ingestion (IR in g WW per urchin day−1) were proportional to body weight (W in g WW) according to the functions: IR = 0.56W0.34 (T. gratilla) and IR = 0.17W0.53 (Salmacis sphaeroides). Predicted grazing impact of urchins on seagrass resources varied spatially and temporally. Estimated annual grazing rate at the main study site was 158 g AFDW m−2, equivalent to 24% of annual seagrass production, but owing to large changes in urchin population structure and density, grazing impact is expected to vary from < 5% to > 100% at different times of year. A synthesis of knowledge on the lower-level trophic pathways in this system indicates that seagrass-urchin and periphyton-epifauna grazing interactions are both important in their contribution to overall trophic flux.
- Nitrate and phosphate uptake of morphologically distinct calcified macroalgaeNarvarte, Bienson Ceasar V.; Hinaloc, Lourie Ann R.; Gonzaga, Shienna Mae C.; Crisostomo, Bea A.; Genovia, Tom Gerald T.; Roleda, Michael Y. (Informa UK Limited, 2023-05-02)Calcified macroalgae are essential components of marine ecosystem, yet much of their physiology remains to be understood. Here, the nutrient (NO3– and PO4–3) uptake physiologies of two branched macroalgae, Actinotrichia fragilis (Nemaliophycidae) and Amphiroa fragilissima (Corallinophycidae), and the non-geniculate rhodolith Sporolithon sp. (Corallinophycidae) were examined. Sporolithon sp. had the lowest uptake rate through time and the three calcified macroalgae had a surge in NO3– and PO4–3 uptake that occurred between 3 and 20 min, with a maximum uptake at 3 min, after which the nutrient uptake rates declined. The NO3– uptake of the three calcified macroalgae followed Michaelis-Menten kinetics. For NO3– uptake, Sporolithon sp. had the lowest Km (2.72 ± 0.97 µM), Vmax (0.08 ± 0.01 µmol gDW–1 h–1), Vmax/Km (0.05 ± 0.03 µmol gDW–1 h–1 µM−1) and α (0.01 ± 0.00 µmol gDW–1 h–1 µM−1), while A. fragilis had the highest Km (12.35 ± 0.71 µM) and Vmax (6.41 ± 0.23 µmol gDW–1 h–1), and A. fragilissima had the highest Vmax/Km (1.52 ± 0.26 µmol gDW–1 h–1 µM−1) and α (0.37 ± 0.01 µmol gDW–1 h–1 µM−1). Moreover, the PO4–3 uptake rate of the three species was faster at higher PO4–3 levels. These differences in species-specific nutrient uptake traits are likely caused by differences in morphology. These traits are important for survival and proliferation of this group of marine organisms, particularly in a nutrient-variable environment.This is contribution no. 494 from the University of the Philippines – the Marine Science Institute, (UP-MSI). We thank our laboratory aides Jerry Arboleda, Guillermo Valenzuela and Robert Valenzuela for their help in our sample collection. We also thank the UPMSI-Bolinao Marine Laboratory for providing us with the venue where we conducted our experiment and laboratory analyses. MYR acknowledges the Department of Science and Technology (DOST) Balik Scientist Program (BSP) fellowship.