National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
2 results
Search Results
- In Silico supported nontarget analysis of contaminants of emerging concern: Increasing confidence in unknown identification in wastewater and surface watersAngeles, Luisa F.; Halwatura, Lahiruni M.; Antle, Jonathan P.; Simpson, Scott; Jaraula, Caroline M.B.; Aga, Diana S. (American Chemical Society, 2021-08-01)Nontarget analysis using liquid chromatography–high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. In this study, wastewater and surface water samples from three locations in Manila, Philippines were analyzed for CECs using a nontarget analysis approach with an LC-Orbitrap. A previously optimized semiautomated workflow was used for data processing with Compound Discoverer. A total of 157 compounds were identified, with 21 confirmed with reference standards, 83 confirmed with evidence from a mass spectral library (mzCloud), and 53 tentatively identified using in silico fragmentation (MetFrag). These compounds include pharmaceuticals such as antibiotics, antifungal, and antihypertensive compounds, human metabolites, natural products, pesticides, and industrial chemicals. Compounds confirmed with reference standards include antibiotics ciprofloxacin, clarithromycin, acetyl-sulfamethoxazole, and trimethoprim (2 to 19 ng/L), and antifungal compounds carbendazim and climbazole (3–47 ng/L). The pesticides diethyltoluamide (DEET) and diuron were also detected (37 ng/L). The utility of a preliminary multivariable linear regression quality structure-retention relationship (QSRR) model based on quantum chemical molecular descriptors is demonstrated. This study demonstrates the importance of using tools and software that are helpful for annotating HRMS data and reporting detections according to a standardized classification system. The detection of several CECs in wastewater and surface water samples show the importance of performing nontarget analysis in determining occurrence of CECs in the environment.We acknowledge support from the National Science Foundation PIRE-HEARD award number 1545756 and USAID PEER subaward number 2000009924. S.S. thanks the National Science Foundation (Award #1904825) for support of this research, and the Donors of the American Chemical Society Petroleum Research Fund (PRF-58954-UNI5). We also thank Shyrill Mae Mariano from the Marine Science Institute in the University of the Philippines − Diliman who helped with the sample collection and Rebecca Dickman from University at Buffalo for her help on technical work.
- Utility of low-cost recreational-grade echosounders in imaging and characterizing bubbly coastal submarine groundwater dischargeGabuyo, Mary Rose P.; Siringan, Fernando P. (Elsevier, 2022-01)Despite the growing knowledge on the significance of submarine groundwater discharge (SGD), mapping its occurrence is a continuing challenge. This study explores the capability and applicability of low-cost, off-the-shelf, recreational-grade echosounders (RGESs) to image different types and locate point sources of bubbly coastal SGD. Standard and systematic methodologies for efficient imaging and processing were established. The use of RGES was validated using a research-grade side scan sonar (RGSSS), continuous resistivity profiling, conductivity-temperature-depth casting, and MantaCam and SCUBA diving surveys. Lower frequencies (77/83 kHz) of RGESs showed more distinct acoustic signatures of bubbly SGD, as these were nearly the same as the effective resonance frequency of the bubbles. The clusters of bubbly discharges have higher backscatter strength than the water column noise, resulting in the definitive and convenient manual detection of SGD features. Hence, showing more accurate point sources of SGD. Three types of known SGD occurrence were identified and characterized based on acoustic behavior and spatial distribution: 1) sparse, discrete and sporadic discharge over wide area, 2) curtain, high and continuous bubble concentrations from widespread discharge, and 3) spring, direct bubble discharge from intense seafloor degassing at a single point source. These results showed that RGES provides a good alternative for more efficient and cost-effective preliminary coastal SGD works. Additional research on areas with water-dominated discharge but no bubbling is recommended.