menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta
    Matriano, Danielle M.; Alegado, Rosanna A.; Conaco, Cecilia (Springer, 2021-03-16)
    Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome—evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.
    We thank Joshua Dizon and Francis Tablizo of the Philippine Genome Center Core Facility for Bioinformatics for assistance with scripts and database construction. We thank Becca Lensing (University of Hawai’i), Cheryl Andam (University of New Hampshire), Deo Onda and Ron Leonard Dy (University of the Philippines) for insightful comments and suggestions on the analysis and interpretation of the data. This work was supported by thesis grants from the Department of Science and Technology Accelerated Science and Technology Human Resource Development Program-National Science Consortium (DOST-ASTHRDP-NSC) and the University of the Philippines Marine Science Institute to DM.
  • Thumbnail Image
    Global mass spectrometric analysis reveals chemical diversity of secondary metabolites and 44-Methylgambierone production in Philippine Gambierdiscus strains
    Malto, Zabrina Bernice L.; Benico, Garry A.; Batucan, Jeremiah D.; Dela Cruz, James; Romero, Marc Lawrence J.; Azanza, Rhodora V.; Salvador-Reyes, Lilibeth A. (Frontiers Media SA, 2022-02-04)
    Surveillance and characterization of emerging marine toxins and toxigenic dinoflagellates are warranted to evaluate their associated health risks. Here, we report the occurrence of the ciguatera poisoning-causative dinoflagellate Gambierdiscus balechii in the Philippines. Toxin production and chemical diversity of secondary metabolites in G. balechii GtoxSAM092414, G. balechii Gtox112513, and the recently reported Gambierdiscus carpenteri Gam1BOL080513 were assessed using targeted and untargeted UPLC-MS/MS analysis and radioligand receptor-binding assay (RBA). 44-methylgambierone was produced by all three strains, albeitwith different levels based on RBA and UPLC-HRMS/MS analysis. The fatty acid composition was similar in all strains, while subtle differences in monosaccharide content were observed, related to the collection site rather than the species. Molecular networking using the GNPS database identified 45 clusters belonging to at least ten compound classes, with terpene glycosides, carbohydrate conjugates, polyketides, and macrolides as major convergence points. Species-specific peptides and polyhydroxylated compounds were identified in G. balechii GtoxSAM092414 and G. carpenteri Gam1BOL080513, respectively. These provide a glimpse of the uncharacterized biosynthetic potential of benthic dinoflagellates and highlight the intricate and prolific machinery for secondary metabolites production in these organisms.
    We would like to thank H. Junio and the Secondary Metabolites Profiling Laboratory of the Institute of Chemistry, University of the Philippines Diliman and K. B. Davis for assistance in the conduct of this study.
  • Thumbnail Image
    Physicochemical and biochemical characterization of collagen from Stichopus cf. horrens tissues for use as stimuli-responsive thin films
    Sisican, Kim Marie D.; Torreno, Vicenzo Paolo M.; Yu, Eizadora T.; Conato, Marlon T. (American Chemical Society, 2023-09-20)
    The mutable collagenous tissue (MCT) of sea cucumber, with its ability to rapidly change its stiffness and extensibility in response to different environmental stress conditions, serves as inspiration for the design of new smart functional biomaterials. Collagen, extracted from the body wall of Stichopus cf. horrens, a species commonly found in the Philippines, was characterized for its suitability as stimuli-responsive films. Protein BLAST search showed the presence of sequences commonly found in type VII and IX collagen, suggesting that Stichopus horrens collagen is heterotypic. The maximum transition temperature recorded was 56.0 ± 2 °C, which is higher than those of other known sources of marine collagen. This suggests that S. horrens collagen has better thermal stability and durability. Collagen-based thin films were then prepared, and atomic force microscopy (AFM) imaging showed the visible collagen network comprising the films. The thin films were subjected to thermomechanical analysis with degradation starting at >175 °C. At 100–150 °C, the collagen-based films apparently lose their translucency due to the removal of moisture. Upon exposure to ambient temperature, instead of degrading, the films were able to revert to the original state due to the readsorption of moisture. This study is a demonstration of a smart biomaterial developed from S. cf. horrens collagen with potential applications in food, pharmaceutical, biomedical, and other collagen-based research.
    This research was funded by the Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development of the Department of Science and Technology (DOST-PCAARRD).
  • Thumbnail Image
    Comprehensive metabolomics of Philippine Stichopus cf. horrens reveals diverse classes of valuable small molecules for biomedical applications
    Torreno, Vicenzo Paolo M.; Molino, Ralph John Emerson J.; Junio, Hiyas A.; Yu, Eizadora T. (Public Library of Science (PLoS), 2023-12-06)
    Stichopus cf. horrens is an economically important sea cucumber species in Southeast Asia due to their presumed nutritional and medicinal benefits. However, compared to other sea cucumbers such as Apostichopus japonicus, there are no biochemical studies on which compounds contribute to the purported bioactivities of S. cf. horrens. To address this, a high-throughput characterization of the global metabolite profile of the species was performed through LC-MS/MS experiments and utilizing open-access platforms such as GNPS, XCMS, and metaboAnalyst. Bioinformatics-based molecular networking and chemometrics revealed the abundance of phospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and phosphatidylserines (PSs) in the crude samples. Body wall extracts were observed to have higher levels of structural, diacylated PCs, while the viscera have higher relative abundance of single-tail PCs and PEs that could be involved in digestion via nutrient absorption and transport for sea cucumbers. PEs and sphingolipids could also be implicated in the ecological response and morphological transformations of S. cf. horrens in the presence of predatory and other environmental stress. Interestingly, terpenoid glycosides and saponins with reported anti-cancer benefits were significantly localized in the body wall. The sulfated alkanes and sterols present in S. cf. horrens bear similarity to known kairomones and other signaling molecules. All in all, the results provide a baseline metabolomic profile of S. cf. horrens that may further be used for comparative and exploratory studies and suggest the untapped potential of S. cf. horrens as a source of bioactive molecules.
    The authors would like to thank the Marine Invertebrate Ecology Laboratory under Dr. Marie Antonette Juinio-Meñez for the collection and maintenance of animals, and the Mass Spectrometry Facility at the Institute of Chemistry, UP Diliman for instrument use.
  • Thumbnail Image
    Trans-Arctic asymmetries, melting pots and weak species cohesion in the low-dispersal amphiboreal seaweed Fucus distichus
    Neiva, João; Assis, Jorge; Fragkopoulou, Eliza; Pearson, Gareth A.; Raimondi, Peter T.; Anderson, Laura; Krause-Jensen, Dorte; Marbà, Núria; Want, Andrew; Selivanova, Olga; Nakaoka, Masahiro; Grant, W. Stewart; Konar, Brenda; Roleda, Michael Y.; Sejr, Mikael K.; Paulino, Cristina; Serrão, Ester A. (Frontiers Media SA, 2024-04-18)
    Amphiboreal taxa are often composed of vicariant phylogroups and species complexes whose divergence and phylogeographic affinities reflect a shared history of chronic isolation and episodic trans-Arctic dispersal. Ecological filters and shifting selective pressures may also promote selective sweeps, niche shifts and ecological speciation during colonization, but these are seldom considered at biogeographical scales. Here we integrate genetic data and Ecologic Niche Models (ENMs) to investigate the historical biogeography and cohesion of the polymorphic rockweed Fucus distichus throughout its immense amphiboreal range, focusing on trans-Arctic asymmetries, glacial/interglacial dynamics, and integrity of sympatric eco-morphotypes. Populations were sampled throughout the Pacific and the Atlantic, from southern rear-edges to the high-Arctic. They were genotyped for seven microsatellites and an mtDNA spacer, and genetic diversity and structure were assessed from global to local scales. ENMs were used to compare niche divergence and magnitude of post-glacial range shifts in Pacific versus Atlantic sub-ranges. Haplotypic and genotypic data revealed distinct and seemingly isolated Pacific vs Arctic/Atlantic gene-pools, with finer-scale regional sub-structuring pervasive in the Pacific. MtDNA diversity was highly structured and overwhelmingly concentrated in the Pacific. Regionally, Alaska showed the highest intra-population diversity but the lowest levels of endemism. Some sympatric/parapatric ecotypes exhibited distinct genotypic/haplotypic compositions. Strikingly, niche models revealed higher Pacific tolerance to maximum temperatures and predicted a much more consolidated presence in the NE Atlantic. Glacial and modern ranges overlapped extensively in the Pacific, whereas the modern Atlantic range was largely glaciated or emerged during the Last Glacial Maximum. Higher genetic and ecogeographic diversity supports a primary Pacific diversification and secondary Atlantic colonization, also likely reflecting the much larger and more stable climatic refugia in the Pacific. The relic distribution and reduced ecological/morphological plasticity in the NE Atlantic are hypothesized to reflect functional trans-Arctic bottlenecks, recent colonization or competition with congeners. Within the Pacific, Alaska showed signatures of a post-glacial melting pot of eastern and southern populations. Genetic/ecotypic variation was generally not sufficiently discontinuous or consistent to justify recognizing multiple taxonomic entities, but support a separate species in the eastern Pacific, at the southern rear-edge. We predict that layered patterns of phylogeographic structure, incipient speciation and niche differences might be common among widespread low-dispersal amphiboreal taxa.
    The authors thank Marta Valente (CCMAR), André Silva and Diogo Brito for sequencing and genotyping work and all the people involved in sample collection. Samples from Logy Bay were kindly collected by Kyle R. Millar. DK-J and NM thank Hurtigruten’s FRAM cruise for help with sampling along the Greenland west coast. Greenland sampling was also connected with campaigns for the MarineBasis component of the Greenland Ecosystem Monitoring (GEM) Programme in Nuuk and Young Sound, which is acknowledged.