National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
Search Results
- Genetic diversity of Kappaphycus malesianus (Solieriaceae, Rhodophyta) from the PhilippinesDumilag, Richard V.; Crisostomo, Bea A.; Aguinaldo, Zae-Zae A.; Lluisma, Arturo O.; Gachon, Claire M.M.; Roleda, Michael Y. (Elsevier, 2023-07)Kappaphycus farming for carrageenan production is characterized by a strong selective pressure at the genetic level. Traits of agronomic importance are compromised due to domestication bottlenecks and the subsequent events of possible selective breeding of founding cultivars. Kappaphycus malesianus is farmed in Malaysia and the Philippines, and is distributed within the Malesian region. While the majority of genetically characterized specimens of this species are from Malaysia, those from the Philippines are poorly explored. Here, we assessed the genetic diversity of K. malesianus from the Philippines based on cox1 sequences. Of the 15 identified haplotypes, 14 specimens represent three novel haplotypes (wild specimens) that form a group distinct from the main clade comprising most K. malesianus haplotypes known to date. An additional haplotype from a cultivated specimen was identical to that of the most widely distributed haplotype. Our findings demonstrate that the K. malesianus is genetically more diverse than previously recognized. It is expected that higher genetic diversity may be revealed through additional sampling from a wider geographic range and careful application of integrative approaches. Future selective breeding programs in Kappaphycus would benefit from the incorporation of the genetic resources, as provided in this study.
- Impacts of aquaculture nutrient sources: ammonium uptake of commercially important eucheumatoids depends on phosphate levelsNarvarte, Bienson Ceasar V.; Hinaloc, Lourie Ann R.; Gonzaga, Shienna Mae C.; Roleda, Michael Y. (Springer, 2023-09-14)In an integrated multitrophic aquaculture (IMTA) system, seaweeds serve as extractive species that utilize excess nutrients, thereby reducing the risk of eutrophication and promoting sustainable aquaculture. However, the use of excessive fish feeds and the resultant faecal waste as nutrient streams can contribute to variations in nitrogen and phosphorus levels (e.g., primarily NH4+ and PO4−3) in the surrounding area and this may impact the physiology of the integrated seaweeds, particularly on how these species take up inorganic nutrients. In this study, the effect of different PO4−3 levels on NH4+ uptake of the three commercially important eucheumatoids Kappaphycus alvarezii, Kappaphycus striatus and Eucheuma denticulatum was examined under laboratory conditions. Seaweed thalli (n = 4) were incubated in seawater media containing 30 µM NH4+, and 0, 0.5, 1.0, 1.5, 3.0 or 5.0 µM PO4−3 for 1 h under a saturating light level of 116 ± 7.13 µmol photons m−2 s−1 inside a temperature-controlled laboratory. Species-specific responses to PO4−3 levels were observed. For K. alvarezii, maximum NH4+ uptake (17.8 ± 1.6 µmol gDW−1 h−1) was observed at 0.5 µM PO4−3 and the uptake rate declined at higher PO4−3 levels. For K. striatus, NH4+ uptake increased with increasing PO4−3 levels, with maximum N uptake (6.35 ± 0.9 µmol gDW−1 h−1) observed at 5.0 µM PO4−3. For E. denticulatum, maximum NH4+ uptake (14.6 ± 1.4 µmol gDW−1 h−1) was observed at 1.0 µM PO4−3. Our results suggest that among the three eucheumatoid species, the NH4+ uptake of K. striatus persists even at high levels of PO4−3. However, our results also showed that K. striatus had the lowest range of NH4+ uptake rates. These results should be taken into consideration when incorporating eucheumatoids in the IMTA system, where PO4−3levels significantly vary in space and time.This is contribution no. 500 from the Marine Science Institute, University of the Philippines (UPMSI), Diliman. The AlgaE Team would like to thank the Bolinao Marine Laboratory (BML) for providing the venue to conduct our experiments. BCV Narvarte and MY Roleda acknowledge the Sea6 Energy Pvt. Ltd. for sponsorship during the 24th International Seaweed Symposium (ISS) held on February 19-24, 2023, at Hobart, Tasmania, Australia. Likewise, BCV Narvarte and LAR Hinaloc would like to thank the University of the Philippines- Office of the International Linkages (UP-OIL) for providing them with a travel grant to attend the aforementioned symposium. BCV Narvarte also acknowledges the Department of Science and Technology- Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development (DOST-PCAARRD) for his PhD Scholarship (GREAT- Graduate Research and Education Assistantship for Technology Program).