menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Sargassum sp. juice as an early juvenile supplemental feed for Stichopus cf. horrens
    Ibañez, Glaiza; Cabanayan-Soy, Rona; Baure, Jerwin; Juinio-Meñez, Marie Antonette (Springer, 2022-09-28)
    The development of an efficient and low-cost feed is important to reduce the production and maintenance costs of microalgae. In this study, two experiments were conducted to evaluate the feasibility of using Sargassum sp. juice (SARG) to boost the growth and survival of post-settled Stichopus cf. horrens juveniles. Experiment 1 tested whether SARG improves growth compared with live microalgae diets, Chaetoceros calcitrans (Cc), combined Cc and Navicula ramosissima (Nr), and an unfed treatment. Experiment 2 determined the best SARG concentration—high feeding regime (HFR; 1 mL ind−1), medium (MFR; 0.5 mL ind−1), or low (LFR; 0.25 ml ind−1), relative to live microalgae Chaetoceros muelleri (CM). Juveniles in both experiments were reared for 30 days. In Experiment 1, the average daily growth rate (DGRL) of juveniles in SARG (0.04 ± 0.01 cm d−1) was the highest although not significantly different from Cc and Cc + Nr, but was significantly higher than the control. In Experiment 2, DGRL at day 14 in HFR (− 0.02 ± 0.02 cm d−1) was significantly lower than LFR (0.01 ± 0.01 cm d−1) and MFR (0.02 ± 0.02 cm d−1). Survival was higher in all SARG treatments compared with CM, while a significant decrease in feeding activity was observed in HFR by day 30. Results indicate that concentrations of 0.25–0.5 mL SARG per juvenile can boost growth and be an alternate diet for post-settled juveniles during early rearing. However, SARG alone is not sufficient to maintain growth beyond 3 weeks. With SARG feed supplementation and water quality management, the scaling-up of juvenile production of this emergent culture species can be accelerated.
    Our sincere gratitude to Mr. Tirso Catbagan and Mr. Garry Bucol for their assistance in the set-up of the experiments. We also thank Ms. Rose Angeli Rioja and Ms. JayR Gorospe for providing inputs to improve this paper. We also thank the Sea cucumber Research Team and the staff of the University of the Philippines—Marine Science Institute, Bolinao Marine Laboratory for their support and assistance during the conduct of the study.
  • Metamorphic success and production cost of Holothuria scabra reared on microalgae concentrates compared with live microalgae
    Garpa, Tomilyn Jan; Caasi, Olivier Josh C.; Juinio–Meñez, Marie Antonette (Bureau of Fisheries and Aquatic Resources, 2024-03-07)
    The production of live microalgae poses challenges for the expansion of sandfish hatcheries, hindered by high costs and limited technical resources. In relation to this, the use of three imported commercial concentrates (Instant Algae®) - TW1200 (Thalassiosira weisflogii), TISO1800 (Isochrysis sp.), and Shellfish1800 (mixed diatom) - were compared with live Chaetoceros calcitrans (CC). The diet efficacy was evaluated based on larval development, growth, and survival to late auricularia (LA) with hyaline spheres (HS), and the number of post-settled juveniles. Larvae reared with TW did not progress beyond LA, while those fed CC exhibited earlier LA development, larger sizes (1028.43 ± 19.38 µm), and significantly more post–settled juveniles (9,268 ± 2,183.79) compared to SHELL and TISO. Although TISO larvae reached a larger size during LA (855.7 ± 62.67 µm), SHELL resulted in a higher number of post-settled juveniles. The better performance of CC and SHELL may be attributed to their higher carbohydrate content. Despite SHELL and TISO having lower juvenile yields and longer feeding durations, the estimated cost per juvenile using SHELL, TISO, and CC were PHP 2.00, PHP 11.77, and PHP 0.52, respectively. Results showed that microalgae concentrates are not a cost-effective option under the studied conditions. The potential use of microalgae concentrates as supplemental feeds and further research to develop the use of local microalgae concentrates to sandfish larval culture are discussed.
    This study was funded by Australian Centre for International Agricultural Research (ACIAR) through the project FIS/2016/122 “Increasing technical skills supporting community-based sea cucumber production in Vietnam and the Philippines” and administrative support from the Marine Environment and Resources Foundation (MERF), Inc. We would also like to thank the Bolinao Marine Laboratory of the University of the Philippines Marine Science Institute for the use of facilities and equipment. We are grateful to our collaborators, Jon Altamirano and Roselyn Noran, and SEAFDEC AQD for guidance on the methods used for preparation and protocols of microalgae concentrate feeding regimen. Special thanks to JayR Gorospe for comments on the earlier draft and Jerwin Baure for copyediting this manuscript. The assistance of Mr. Tirso Catbagan in the culture of larvae and maintenance of the experimental tanks was invaluable during the experiment.