National Committee on Marine Sciences (NCMS)
Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6
Browse
Search Results
- Characteristics of marine heatwaves in the PhilippinesEdullantes, Brisneve; Concolis, Brenna Mei M.; Quilestino-Olario, Raven; Atup, Dale Patrick D.; Cortes, Aiza; Yñiguez, Aletta T. (Elsevier, 2023-09)Marine Heatwaves (MHWs) are prolonged, discrete, and anomalously warm events, which have recently gained global attention due to their far-reaching effects and reported impacts. Although intensive studies have been carried out at global and regional scales, these events remained understudied in the Philippines – a country with high marine biodiversity. The Philippines is highly vulnerable to the impacts of these extreme events as it lies in the western boundary of the Pacific that is considered as a hotspot for MHWs. The present study used multi-year climatic sea surface temperature (SST) record to detect MHWs in the Philippines. The detected events were then characterized using the standardized metrics. Linear trend analysis was conducted to determine the magnitude and direction of the change of the MHW metrics over time. Decadal trend revealed that MHWs in the Philippines significantly increased from seven MHWs in the 1980s to 37 MHWs in the last decade. Moreover, increased duration was remarkable in 2020 with 276 MHW days. MHW frequency and duration were increasing at a rate almost twice as its neighboring waters. Intensities did not significantly increase with time, but the highest SST anomaly is associated with El Niño Southern Oscillation. Furthermore, the eastern and western region of the Philippines is vulnerable to MHWs, but hotspots are mostly confined in the West Philippine Sea and western tropical Pacific. An in-depth investigation of the drivers of MHWs is recommended to understand the physical mechanisms of the development of these extreme thermal events in the Philippine seas. The findings have significant implications for coastal marine resource management, highlighting the need for adaptive management strategies and increased monitoring and research efforts to mitigate the impacts of MHWs on marine ecosystems and local economies in the Philippines.
- Fish and benthic communities in an offshore and well-managed coral reef after bleaching disturbance in the PhilippinesQuimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle; Gomez, Elizabeth; Sayco, Sherry Lyn; Dumalagan, Edwin E.; Siringan, Fernando P.; Conaco, Cecilia; Cabaitan, Patrick C. (Springer, 2023-08-29)Climate change is perhaps the greatest threat to coral reefs worldwide. However, there is spatial variation in the extent and severity of this disturbance, with offshore and well-managed reefs presumed to be less vulnerable to anthropogenic disturbance. Here, fish and benthic communities at the offshore and well-managed reefs of Apo Reef Natural Park, Philippines, were examined during a bleaching disturbance in 2016 and reassessed 2 (2018) and 3 years (2019) after using scuba surveys. Results showed that benthic communities varied more strongly with year attributed to changes in the benthic cover of coral. These changes were influenced by site, with some sites experiencing coral loss of 41–48%, while other sites exhibited minimal changes. Site differences in coral loss may be associated with coral cover, with sites that had high coral cover prior to bleaching incurring larger loss of coral cover. Fish communities varied more with sites and was associated with differences in the predominant benthos. The stability of fish communities with year despite coral loss may be attributed to the minimal loss of coral cover at some sites. For sites that experienced high losses of coral cover, the presence of alternative and deeper habitats may have provided shelter and food for more mobile fishes maintaining taxonomic composition within sites. This study shows that bleaching disturbance circumvents effective management, but impacts are variable even at small (≤ 3 km) spatial scales. Benthic community composition and presence of alternative habitats potentially alleviate the negative impacts of bleaching on reef fish diversity and abundance.
- Natural and anthropogenic climate variability sgnals in a 237-year-long coral record from the PhilippinesInoue, Mayuri; Fukushima, A.; Chihara, M.; Genda, A.; Ikehara, Minoru; Okai, T.; Kawahata, Hodaka; Siringan, F. P.; Suzuki, Atsushi (American Geophysical Union, 2023-11-29)Both proxy and model studies conducted to understand anthropogenic warming have revealed historical variations in sea-surface temperature (SST) since the industrial revolution. However, because of discrepancies between observations and models in the late nineteenth century, the timing and degree of anthropogenic warming remain unclear. In this study, we reconstructed a 237-year-long record of SST and salinity using a coral core collected from Bicol, southern Luzon, Philippines, which is located at the northern edge of the western Pacific warm pool. The SST record showed volcanic cooling after several volcanic eruptions, including the 1815 Tambora eruption, but the pattern of change differed. Decadal SST variations at Bicol are connected to Pacific Decadal Variability (PDV). Therefore, it is suggested that the PDV conditions at the time of the eruption may have influenced marine conditions, such as the degree and duration of cooling and/or salinity, after the eruptions. Although there were discrepancies in SST variations among the modeled, observed, and proxy SST data from the late nineteenth to early twentieth centuries, SST data from the late twentieth century showed globally coherent anthropogenic warming, especially after 1976. In particular, summer SST in the northwestern Pacific has become more sensitive to anthropogenic forcing since 1976.
- Genus and size-specific susceptibility of soft corals to 2020 bleaching event in the PhilippinesBaran, Christine; Luciano, Rhea Mae A.; Segumalian, Christine; Valino, Darryl Anthony; Baria-Rodriguez, Maria Vanessa (Taylor & Francis, 2023-05-08)Soft corals are zooxanthellate sessile animals supporting various organisms in coral reefs. However, their populations are threatened by the impacts of ocean warming. Under thermal stress conditions, soft corals may experience mild to severe bleaching which may lead to death. Understanding soft coral bleaching responses highlights the importance in predicting how populations and diversity may be affected by changing climate scenarios. In this study, we examined the bleaching responses of the three dominant soft coral genera (Lobophytum, n = 1318; Sarcophyton, n = 116; Sinularia, n = 639 colonies) in the Bolinao-Anda Reef Complex (BARC), Pangasinan, north-western Philippines during the 2020 thermal stress event in terms of genus and colony size susceptibility, and zooxanthellae density. Degree heating week (DHW) data from 1986–2020 were obtained using remotely sensed data to determine thermal anomalies in the study sites. The maximum DHW (6.3) in 2020 occurred between July–August while bleaching surveys were done during October of the same year. The percentage of bleached portions in each colony was used to determine bleaching category: no bleaching (0%), moderately bleached (1–50%) and heavily bleached (>50%). Quantification of bleaching prevalence and susceptibility of colony sizes were determined by colony count and mean diameter measurements taken from quadrat photographs in October 2020. Haphazard tissue collection (∼3 cm) in each colony of three soft coral genera per bleaching category was done to quantify zooxanthellae density. Results showed that Lobophytum colonies had the lowest bleaching prevalence (41%), followed by Sinularia (66%) and Sarcophyton (78%). All colony size classes of the three genera were susceptible to bleaching. However, smaller colonies of Lobophytum (<15 cm), Sarcophyton (<5 cm) and Sinularia (<5 cm) showed less susceptibility than large colonies. Zooxanthellae density was significantly reduced in moderately and heavily bleached colonies. The results of this study highlight that bleaching susceptibility is genus specific, with Sarcophyton and Sinularia being more susceptible to bleaching than Lobophytum. Smaller colonies seemed to be less susceptible to bleaching than large-sized soft corals suggesting a differential thermal stress response. Spatial variations in bleaching prevalence were also found among reef sites with varying environmental conditions and thermal stress histories. This work provided initial observations on how bleaching affects soft corals. Further studies on soft coral community recovery are recommended to fully understand how these organisms perform after thermal stress events.