menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Complex patterns of genetic structure in the sea cucumber Holothuria (Metriatyla) scabra from the Philippines: implications for aquaculture and fishery management
    Lal, Monal M.; Macahig, Deo A. S.; Juinio-Meñez, Marie A.; Altamirano, Jon P.; Noran-Baylon, Roselyn; de la Torre-de la Cruz, Margarita; Villamor, Janine L.; Gacura, Jonh Rey L.; Uy, Wilfredo H.; Mira-Honghong, Hanzel; Southgate, Paul C.; Ravago-Gotanco, Rachel (Frontiers Media SA, 2024-06-04)
    The sandfish Holothuria (Metriatyla) scabra, is a high-value tropical sea cucumber harvested from wild stocks for over four centuries in multi-species fisheries across its Indo-Pacific distribution, for the global bêche-de-mer (BDM) trade. Within Southeast Asia, the Philippines is an important centre of the BDM trade, however overharvesting and largely open fishery management have resulted in declining catch volumes. Sandfish mariculture has been developed to supplement BDM supply and assist restocking efforts; however, it is heavily reliant on wild populations for broodstock supply. Consequently, to inform fishery, mariculture, germplasm and translocation management policies for both wild and captive resources, a high-resolution genomic audit of 16 wild sandfish populations was conducted, employing a proven genotyping-by-sequencing approach for this species (DArTseq). Genomic data (8,266 selectively-neutral and 117 putatively-adaptive SNPs) were used to assess fine-scale genetic structure, diversity, relatedness, population connectivity and local adaptation at both broad (biogeographic region) and local (within-biogeographic region) scales. An independent hydrodynamic particle dispersal model was also used to assess population connectivity. The overall pattern of population differentiation at the country level for H. scabra in the Philippines is complex, with nine genetic stocks and respective management units delineated across 5 biogeographic regions: (1) Celebes Sea, (2) North and (3) South Philippine Seas, (4) South China and Internal Seas and (5) Sulu Sea. Genetic connectivity is highest within proximate marine biogeographic regions (mean Fst=0.016), with greater separation evident between geographically distant sites (Fst range=0.041–0.045). Signatures of local adaptation were detected among six biogeographic regions, with genetic bottlenecks at 5 sites, particularly within historically heavily-exploited locations in the western and central Philippines. Genetic structure is influenced by geographic distance, larval dispersal capacity, species-specific larval development and settlement attributes, variable ocean current-mediated gene flow, source and sink location geography and habitat heterogeneity across the archipelago. Data reported here will inform accurate and sustainable fishery regulation, conservation of genetic diversity, direct broodstock sourcing for mariculture and guide restocking interventions across the Philippines.
  • Thumbnail Image
    Multi-scale coral reef and seascape habitat variables combine to influence reef fish assemblages
    Sievers, Katie T.; McClure, Eva C.; Abesamis, Rene A.; Russ, Garry R. (MDPI, 2024-04-15)
    While benthic characteristics of coral reef habitats are a major driver of the structure of coral reef fish assemblages, non-reef habitats adjacent to coral reefs (e.g., mangroves, seagrass beds, and macroalgal beds) can affect reef fish assemblages. Here, we investigate how reef fish assemblages respond to local-scale benthic habitats within a coral reef and larger-scale adjacent seascape features (habitats within 500 m of coral reefs) on Siquijor Island in the Philippines. We examined an abundance of species for the entire reef fish assemblage and within the assemblages of parrotfishes (subfamily Scarinae) and wrasses (family Labridae). Five distinct habitat types were identified in a cluster analysis, which incorporated benthic characteristics within coral reefs and habitats adjacent to coral reefs. We found that the diversity and structure of coral reef fish assemblages were affected by benthic characteristics within coral reefs and also by benthic habitat types adjacent to coral reefs. Individual species responses and juveniles of certain species demonstrated uniquely high abundances in habitat clusters characterized by the non-reef habitats surrounding coral reefs. Considering coral reef habitats and adjacent non-reef habitats as a holistic, interconnected seascape will provide better estimations of the drivers of the structures of coral reef fish assemblages.
    This work would not have been possible without the invaluable contributions of the late Angel Alcala. His groundbreaking work paved the way for research in the Philippines, and his lifelong dedication to exploring and protecting the natural ecosystems of his country granted us access to crucial research sites. He also provided essential logistical and administrative support, significantly enhancing the feasibility of this project.
  • Thumbnail Image
    Synthesis and biological evaluation of cyanobacterial-inspired peptides
    Casanova, Jannelle R.; Villaraza, Aaron Joseph L.; Salvador-Reyes, Lilibeth (Philippine-American Academy of Science and Engineering, 2024-03-18)
    Cyanobacteria are known producers of structurally diverse and potent natural products; the majority are peptides with unique modifications. Yet, there remains a huge underexplored chemodiversity from cyanobacteria. Here, we designed a linear octapeptide as a product of combinatorial peptide design inspired by the natural products from the filamentous cyanobacteria Hapalosiphon welwitschii and Leptolyngbya sp. The target peptide was synthesized via solid-phase peptide synthesis (SPPS) using fluorenylmethyloxycarbonyl-protecting group (Fmoc) strategy. Structural diversity was expanded by the substitution of unnatural amino acids to yield five analogues. The structure and sequence of the synthesized peptides were confirmed using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Biological activity evaluation was done; with none of the peptides showing antimicrobial or cytotoxic activities against microbial pathogens and mammalian cells, respectively. To our knowledge, this study is the first to report a combinatorial peptide design inspired by a natural product and a predicted biosynthetic product. This strategy of peptide design expands the chemistry of a known bioactive natural product with the aid of unexplored cyanobacterial biosynthetic gene clusters.
    This study was funded by the Philippine Council for Health Research and Development – Department of Science and Technology through the Discovery and Development of Health Products – Marine Component Program. J.R.C acknowledges scholarship support from the Accelerated Science and Technology Human Resource Development Program of the Department of Science and Technology – Science Education Institute. We acknowledge the assistance of Z. Malto, J. Peran and S. Susana in the conduct of the biological assays. This is MSI Contribution No. 502.
  • Thumbnail Image
    Seaweed as a resilient food solution after a nuclear war
    Jehn, Florian Ulrich; Dingal, Farrah Jasmine; Mill, Aron; Harrison, Cheryl; Ilin, Ekaterina; Roleda, Michael Y.; James, Scott C.; Denkenberger, David (American Geophysical Union, 2024-01-09)
    Abrupt sunlight reduction scenarios such as a nuclear winter caused by the burning of cities in a nuclear war, an asteroid/comet impact or an eruption of a large volcano inject large amounts of particles in the atmosphere, which limit sunlight. This could decimate agriculture as it is practiced today. We therefore need resilient food sources for such an event. One promising candidate is seaweed, as it can grow quickly in a wide range of environmental conditions. To explore the feasibility of seaweed after nuclear war, we simulate the growth of seaweed on a global scale using an empirical model based on Gracilaria tikvahiae forced by nuclear winter climate simulations. We assess how quickly global seaweed production could be scaled to provide a significant fraction of global food demand. We find seaweed can be grown in tropical oceans, even after nuclear war. The simulated growth is high enough to allow a scale up to an equivalent of 45% of the global human food demand (spread among food, animal feed, and biofuels) in around 9–14 months, while only using a small fraction of the global ocean area. The main limiting factor being the speed at which new seaweed farms can be built. The results also show that the growth of seaweed increases with the severity of the nuclear war, as more nutrients become available due to increased vertical mixing. This means that seaweed has the potential to be a viable resilient food source for abrupt sunlight reduction scenarios.
  • Metamorphic success and production cost of Holothuria scabra reared on microalgae concentrates compared with live microalgae
    Garpa, Tomilyn Jan; Caasi, Olivier Josh C.; Juinio–Meñez, Marie Antonette (Bureau of Fisheries and Aquatic Resources, 2024-03-07)
    The production of live microalgae poses challenges for the expansion of sandfish hatcheries, hindered by high costs and limited technical resources. In relation to this, the use of three imported commercial concentrates (Instant Algae®) - TW1200 (Thalassiosira weisflogii), TISO1800 (Isochrysis sp.), and Shellfish1800 (mixed diatom) - were compared with live Chaetoceros calcitrans (CC). The diet efficacy was evaluated based on larval development, growth, and survival to late auricularia (LA) with hyaline spheres (HS), and the number of post-settled juveniles. Larvae reared with TW did not progress beyond LA, while those fed CC exhibited earlier LA development, larger sizes (1028.43 ± 19.38 µm), and significantly more post–settled juveniles (9,268 ± 2,183.79) compared to SHELL and TISO. Although TISO larvae reached a larger size during LA (855.7 ± 62.67 µm), SHELL resulted in a higher number of post-settled juveniles. The better performance of CC and SHELL may be attributed to their higher carbohydrate content. Despite SHELL and TISO having lower juvenile yields and longer feeding durations, the estimated cost per juvenile using SHELL, TISO, and CC were PHP 2.00, PHP 11.77, and PHP 0.52, respectively. Results showed that microalgae concentrates are not a cost-effective option under the studied conditions. The potential use of microalgae concentrates as supplemental feeds and further research to develop the use of local microalgae concentrates to sandfish larval culture are discussed.
    This study was funded by Australian Centre for International Agricultural Research (ACIAR) through the project FIS/2016/122 “Increasing technical skills supporting community-based sea cucumber production in Vietnam and the Philippines” and administrative support from the Marine Environment and Resources Foundation (MERF), Inc. We would also like to thank the Bolinao Marine Laboratory of the University of the Philippines Marine Science Institute for the use of facilities and equipment. We are grateful to our collaborators, Jon Altamirano and Roselyn Noran, and SEAFDEC AQD for guidance on the methods used for preparation and protocols of microalgae concentrate feeding regimen. Special thanks to JayR Gorospe for comments on the earlier draft and Jerwin Baure for copyediting this manuscript. The assistance of Mr. Tirso Catbagan in the culture of larvae and maintenance of the experimental tanks was invaluable during the experiment.