menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Seaweed as a resilient food solution after a nuclear war
    Jehn, Florian Ulrich; Dingal, Farrah Jasmine; Mill, Aron; Harrison, Cheryl; Ilin, Ekaterina; Roleda, Michael Y.; James, Scott C.; Denkenberger, David (American Geophysical Union, 2024-01-09)
    Abrupt sunlight reduction scenarios such as a nuclear winter caused by the burning of cities in a nuclear war, an asteroid/comet impact or an eruption of a large volcano inject large amounts of particles in the atmosphere, which limit sunlight. This could decimate agriculture as it is practiced today. We therefore need resilient food sources for such an event. One promising candidate is seaweed, as it can grow quickly in a wide range of environmental conditions. To explore the feasibility of seaweed after nuclear war, we simulate the growth of seaweed on a global scale using an empirical model based on Gracilaria tikvahiae forced by nuclear winter climate simulations. We assess how quickly global seaweed production could be scaled to provide a significant fraction of global food demand. We find seaweed can be grown in tropical oceans, even after nuclear war. The simulated growth is high enough to allow a scale up to an equivalent of 45% of the global human food demand (spread among food, animal feed, and biofuels) in around 9–14 months, while only using a small fraction of the global ocean area. The main limiting factor being the speed at which new seaweed farms can be built. The results also show that the growth of seaweed increases with the severity of the nuclear war, as more nutrients become available due to increased vertical mixing. This means that seaweed has the potential to be a viable resilient food source for abrupt sunlight reduction scenarios.
  • Transcriptome-derived SNP markers for population assignment of sandfish, Holothuria (Metriatyla) scabra
    Ordoñez, June F.; Ravago-Gotanco, Rachel (Elsevier, 2024-01-30)
    The sandfish, Holothuria scabra is a commercially important fishery and aquaculture species contributing to the high-value sea cucumber industry. Overexploited across many areas throughout its distributional range, natural populations are considered in decline. Accurate genetic assignment to population of origin is becoming increasingly important for genetics-based marine fisheries management and monitoring, especially for species experiencing depletion of natural stocks and decline in fisheries productivity due to overfishing and illegal, unreported, and unregulated (IUU) fishing. Initiatives for genetics-based applications on economically important seafood such as H. scabra have been limited by the lack of comprehensive genome or transcriptome resources. The present study developed and evaluated the use of gene-associated single nucleotide polymorphism (SNP) markers to assign sandfish to three locations in the Philippines, in the proximity of existing and emerging hatchery production centers. In silico SNP discovery pipeline using pooled RNA-Seq libraries and medium-throughput genotyping approach generated a dataset comprising 115 individuals genotyped at 88 SNPs. Population assignment using machine-learning analysis and Bayesian approach revealed that the 88 transcriptome-derived SNPs allowed the assignment of sandfish individuals to population of origin, with an overall assignment accuracy of >80%. The novel SNPs developed could find their utility in facilitating the development of geographic traceability tools applicable in the context of sandfish aquaculture, fisheries management and conservation.
  • Intact shallow and mesophotic assemblages of large carnivorous reef fishes underscore the importance of large and remote protected areas in the Coral Triangle
    Salvador, Mikaela L.; Utzurrum, Jean Asuncion T.; Murray, Ryan; Delijero, Kymry; Conales, Segundo F.; Bird, Christopher E.; Gauthier, David T.; Abesamis, Rene A. (Wiley, 2024-02-23)
    1. Overfishing remains a threat to coral reef fishes worldwide, with large carnivores often disproportionately vulnerable. Marine protected areas (MPAs) can restore fish populations and biodiversity, but their effect has been understudied in mesophotic coral ecosystems (MCEs), particularly in the Coral Triangle. 2. Videos were analysed from baited remote underwater video systems deployed in 2016 to investigate the assemblage structure of large carnivorous fishes at shallow (4–12 m) and mesophotic (45–96 m) depths in two of the largest and most isolated MPAs in the Philippines: an uninhabited, fully no-take MPA enacted in 1988 (Tubbataha Reefs Natural Park) and an archipelagic municipality surrounded by an extensive but not fully no-take MPA declared in 2016 (Cagayancillo). Taxa focused on were groupers (Serranidae), snappers (Lutjanidae), emperors (Lethrinidae), jacks (Carangidae) and the endangered Cheilinus undulatus (Labridae). 3. Mean abundance and species richness were not greater in TRNP than in Cagayancillo regardless of depth despite long-term protection in the former. Limited impacts of fishing in Cagayancillo may explain this result. Differentiation of fish assemblages was evident between TRNP and Cagayancillo but more obvious between depths at each location, probably due more to habitat than MPA effects. In Cagayancillo, overall carnivorous reef fish, grouper and jack mean abundance were 2, 2 and 10 times higher, respectively, at mesophotic depths, suggesting that MCEs can serve as deep refugia from fishing. 4. These findings of differentiation between depths and higher abundance of certain taxa in mesophotic depths emphasize that MCEs are distinct from shallow reefs, serve as important habitat for species susceptible to overfishing and, thus, must be explicitly included in the design of MPAs. This study also highlights the value of maintaining strict protection of MPAs like TRNP for the Coral Triangle and an opportunity to safeguard intact fish assemblages in Cagayancillo by expanding its no-take zones.
  • Metamorphic success and production cost of Holothuria scabra reared on microalgae concentrates compared with live microalgae
    Garpa, Tomilyn Jan; Caasi, Olivier Josh C.; Juinio–Meñez, Marie Antonette (Bureau of Fisheries and Aquatic Resources, 2024-03-07)
    The production of live microalgae poses challenges for the expansion of sandfish hatcheries, hindered by high costs and limited technical resources. In relation to this, the use of three imported commercial concentrates (Instant Algae®) - TW1200 (Thalassiosira weisflogii), TISO1800 (Isochrysis sp.), and Shellfish1800 (mixed diatom) - were compared with live Chaetoceros calcitrans (CC). The diet efficacy was evaluated based on larval development, growth, and survival to late auricularia (LA) with hyaline spheres (HS), and the number of post-settled juveniles. Larvae reared with TW did not progress beyond LA, while those fed CC exhibited earlier LA development, larger sizes (1028.43 ± 19.38 µm), and significantly more post–settled juveniles (9,268 ± 2,183.79) compared to SHELL and TISO. Although TISO larvae reached a larger size during LA (855.7 ± 62.67 µm), SHELL resulted in a higher number of post-settled juveniles. The better performance of CC and SHELL may be attributed to their higher carbohydrate content. Despite SHELL and TISO having lower juvenile yields and longer feeding durations, the estimated cost per juvenile using SHELL, TISO, and CC were PHP 2.00, PHP 11.77, and PHP 0.52, respectively. Results showed that microalgae concentrates are not a cost-effective option under the studied conditions. The potential use of microalgae concentrates as supplemental feeds and further research to develop the use of local microalgae concentrates to sandfish larval culture are discussed.
    This study was funded by Australian Centre for International Agricultural Research (ACIAR) through the project FIS/2016/122 “Increasing technical skills supporting community-based sea cucumber production in Vietnam and the Philippines” and administrative support from the Marine Environment and Resources Foundation (MERF), Inc. We would also like to thank the Bolinao Marine Laboratory of the University of the Philippines Marine Science Institute for the use of facilities and equipment. We are grateful to our collaborators, Jon Altamirano and Roselyn Noran, and SEAFDEC AQD for guidance on the methods used for preparation and protocols of microalgae concentrate feeding regimen. Special thanks to JayR Gorospe for comments on the earlier draft and Jerwin Baure for copyediting this manuscript. The assistance of Mr. Tirso Catbagan in the culture of larvae and maintenance of the experimental tanks was invaluable during the experiment.