menu.header.image.unacom.logo
 

National Committee on Marine Sciences (NCMS)

Permanent URI for this communityhttps://repository.unesco.gov.ph/handle/123456789/6

Browse

Search Results

Now showing 1 - 10 of 10
  • Submerged reef features in Apo and Tubbataha Reefs, Philippines, revealed paleo sea-level history during the last deglaciation
    Munar, Jeffrey C.; Aurelio, Mario A.; Dumalagan, Edwin E.; Tinacba, Erin Joy C.; Doctor, Ma. Angelique A.; Siringan, Fernando P. (Springer, 2024-02-27)
    The morphology of coral reefs provides an effective benchmark of past sea levels because of their limited vertical range of formation and good geologic preservation. In this study, we analyze the seafloor morphology around two atolls in the Philippines: Tubbataha Reef, in Palawan, and Apo Reef, in Occidental Mindoro. High-resolution multibeam bathymetry to a depth of 200 m reveals seafloor features including reef ridges and staircase-like terraces and scarps. Depth profiles across the reefs show terraces formed within six and seven depth ranges in Tubbataha Reef and in Apo Reef, respectively. These were further observed through a remotely operated vehicle. The terraces and scarps are interpreted as backstepping reefs that were drowned during an overall rise in sea level from the Last Glacial Maximum (LGM). Terraces are used as indicators of paleo sea level and the separation between terraces as the magnitude of sea-level rises coeval with meltwater pulse events during the last deglaciation. The pattern for both Apo and Tubbataha reefs indicates subsidence, consistent with the absence of Holocene emergent features and their atoll morphologies. Subsidence of up to 17 m since the LGM in Apo Reef is mainly attributed to the downbowing of the crust toward Manila Trench. In Tubbataha Reef, subsidence of up to 14 m is attributed to the continuous cooling of the volcanic crust underlying the atoll. These can be used to fill gaps in the tectonic history of the study sites from the last deglaciation.
    This study was funded by the Department of Science and Technology–Philippine Council for Agriculture, Aquatic and Natural Resources Research Development (DOST-PCARRD) Geophysical Coral Mapping Project and Acquisition of Detailed Bathymetry for Coastal Erosion Management Project both under F. P. Siringan, and National Assessment of Coral Reef Environment (NACRE) Project under Hazel Arceo. We would like to mention, in particular, Dominic Jone Cabactulan, Timothy Quimpo, Ronald Olavides, Mary Ann Calleja, Patrick Cabaitan, and Cesar Villanoy who were members of the project team. We thank the Tubbataha Management Office, Sablayan Local Government Unit, and Department of Environment and Natural Resources for the work permits and logistical help during the surveys.
  • Thumbnail Image
    Multi-scale coral reef and seascape habitat variables combine to influence reef fish assemblages
    Sievers, Katie T.; McClure, Eva C.; Abesamis, Rene A.; Russ, Garry R. (MDPI, 2024-04-15)
    While benthic characteristics of coral reef habitats are a major driver of the structure of coral reef fish assemblages, non-reef habitats adjacent to coral reefs (e.g., mangroves, seagrass beds, and macroalgal beds) can affect reef fish assemblages. Here, we investigate how reef fish assemblages respond to local-scale benthic habitats within a coral reef and larger-scale adjacent seascape features (habitats within 500 m of coral reefs) on Siquijor Island in the Philippines. We examined an abundance of species for the entire reef fish assemblage and within the assemblages of parrotfishes (subfamily Scarinae) and wrasses (family Labridae). Five distinct habitat types were identified in a cluster analysis, which incorporated benthic characteristics within coral reefs and habitats adjacent to coral reefs. We found that the diversity and structure of coral reef fish assemblages were affected by benthic characteristics within coral reefs and also by benthic habitat types adjacent to coral reefs. Individual species responses and juveniles of certain species demonstrated uniquely high abundances in habitat clusters characterized by the non-reef habitats surrounding coral reefs. Considering coral reef habitats and adjacent non-reef habitats as a holistic, interconnected seascape will provide better estimations of the drivers of the structures of coral reef fish assemblages.
    This work would not have been possible without the invaluable contributions of the late Angel Alcala. His groundbreaking work paved the way for research in the Philippines, and his lifelong dedication to exploring and protecting the natural ecosystems of his country granted us access to crucial research sites. He also provided essential logistical and administrative support, significantly enhancing the feasibility of this project.
  • Thumbnail Image
    Spatial variation in the benthic community structure of a coral reef system in the central Philippines: Highlighting hard coral, octocoral, and sponge assemblages
    Lalas, Jue Alef A.; Manzano, Geminne G.; Desabelle, Lee Arraby B.; Baria-Rodriguez, Maria Vanessa (Elsevier, 2023-07)
    Coral reefs are complex habitats that contain very high biodiversity and provide different ecosystem services. In the Coral Triangle, however, various major benthic components are still understudied. This can limit our understanding of coral reef community dynamics, especially in the presence of a changing climate coupled with local disturbances (e.g., decreased water quality). This study describes the benthic community structure of an ecologically and economically important coral reef system in the central Philippines through characterizing the assemblages of three major components (hard corals, octocorals, and sponges) among sites and stations with varying environmental conditions (i.e., exposure to monsoons, water quality levels). Results reveal significant variations in the mean percentage covers of hard corals, octocorals, and sponges at the site and station levels (ANOVA, p < 0.05), with hard corals dominating in Site 1, which is more exposed to the southwest monsoon, and Site 3, which is an embayed and unexposed site with low water quality, while soft corals dominated in Site 2, which is more exposed to the northeast monsoon. Multivariate analyses also revealed significant variations in the benthic community structure at different spatial scales (ANOSIM, p < 0.05). Interestingly, even stations within a site had significant variations in community structure, with different taxa being dominant. This study highlights the importance of conducting more detailed analyses of understudied taxa (i.e., octocorals and sponges) during coral reef surveys to improve our understanding of coral reef community dynamics that is very important for management.
  • Thumbnail Image
    Fish and benthic communities in an offshore and well-managed coral reef after bleaching disturbance in the Philippines
    Quimpo, Timothy Joseph R.; Requilme, Jeremiah Noelle; Gomez, Elizabeth; Sayco, Sherry Lyn; Dumalagan, Edwin E.; Siringan, Fernando P.; Conaco, Cecilia; Cabaitan, Patrick C. (Springer, 2023-08-29)
    Climate change is perhaps the greatest threat to coral reefs worldwide. However, there is spatial variation in the extent and severity of this disturbance, with offshore and well-managed reefs presumed to be less vulnerable to anthropogenic disturbance. Here, fish and benthic communities at the offshore and well-managed reefs of Apo Reef Natural Park, Philippines, were examined during a bleaching disturbance in 2016 and reassessed 2 (2018) and 3 years (2019) after using scuba surveys. Results showed that benthic communities varied more strongly with year attributed to changes in the benthic cover of coral. These changes were influenced by site, with some sites experiencing coral loss of 41–48%, while other sites exhibited minimal changes. Site differences in coral loss may be associated with coral cover, with sites that had high coral cover prior to bleaching incurring larger loss of coral cover. Fish communities varied more with sites and was associated with differences in the predominant benthos. The stability of fish communities with year despite coral loss may be attributed to the minimal loss of coral cover at some sites. For sites that experienced high losses of coral cover, the presence of alternative and deeper habitats may have provided shelter and food for more mobile fishes maintaining taxonomic composition within sites. This study shows that bleaching disturbance circumvents effective management, but impacts are variable even at small (≤ 3 km) spatial scales. Benthic community composition and presence of alternative habitats potentially alleviate the negative impacts of bleaching on reef fish diversity and abundance.
    We are grateful to the laboratory assistants F Castrence, R de Guzman, B Gabuay, R Valenzuela and K Adolfo for their assistance in the fieldwork. We thank the comments and criticisms of two anonymous reviewers that greatly improved the content of this manuscript.
  • Thumbnail Image
    Decadal stability in coral cover could mask hidden changes on reefs in the East Asian Seas
    Chan, Y. K. S.; Affendi, Y. A.; Ang, P. O.; Baria-Rodriguez, M. V.; Chen, C. A.; Chui, A. P. Y.; Glue, M.; Huang, H.; Kuo, C-Y.; Kim, S. W.; Lam, V. Y. Y.; Lane, D. J. W.; Lian, J. S.; Lin, S. M. N. N.; Lunn, Z.; Nañola, C. L.; Nguyen, V. L.; Park, H. S.; Sutthacheep, M.; Vo, S. T.; Vibol, O.; Waheed, Z.; Yamano, H.; Yeemin, T.; Yong, E.; Kimura, T.; Tun, K.; Chou, L. M.; Huang, D. (Springer, 2023-06-10)
    Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
  • Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions
    Padayhag, Blaire M.; Nada, Michael Angelou L.; Baquiran, Jake Ivan P.; Sison-Mangus, Marilou P.; San Diego-McGlone, Maria Lourdes; Cabaitan, Patrick C.; Conaco, Cecilia (Elsevier, 2023-08)
    Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
  • Thumbnail Image
    Live slow, die old: larval propagation of slow-growing, stress-tolerant corals for reef restoration
    Guest, James; Baria-Rodriguez, Maria Vanessa; Toh, Tai Chong; dela Cruz, Dexter; Vicentuan, Kareen; Gomez, Edgardo; Villanueva, Ronald; Steinberg, Peter; Edwards, Alasdair (Springer, 2023-11-06)
    Efforts to restore coral reefs usually involve transplanting asexually propagated fast-growing corals. However, this approach can lead to outplanted populations with low genotypic diversity, composed of taxa susceptible to stressors such as marine heatwaves. Sexual coral propagation leads to greater genotypic diversity, and using slow-growing, stress-tolerant taxa may provide a longer-term return on restoration efforts due to higher outplant survival. However, there have been no reports to date detailing the full cycle of rearing stress-tolerant, slow-growing corals from eggs until sexual maturity. Here, we sexually propagated and transplanted two massive slow-growing coral species to examine long-term success as part of reef restoration efforts. Coral spat were settled on artificial substrates and reared in nurseries for approximately two years, before being outplanted and monitored for survivorship and growth for a further four years. More than half of initially settled substrates supported a living coral following nursery rearing, and survivorship was also high following outplantation with yields declining by just 10 to 14% over four years. At 6-years post-fertilisation over 90% of outplanted corals were reproductively mature, demonstrating the feasibility of restoring populations of sexually mature massive corals in under a decade. Although use of slower growing, stress tolerant corals for reef restoration may provide a longer-term return on investment due to high post-transplantation survival rates, considerable time is required to achieve even modest gains in coral cover due to their relatively slow rates of growth. This highlights the need to use a mix of species with a range of life-history traits in reef restoration and to improve survivorship of susceptible fast-growing taxa that can generate rapid increases in coral cover.
    We would like to thank Ronald de Guzman, Marcos Ponce, Romer Albino, Jun Castrence (Bolinao Marine Laboratory) and Prof. Chou Loke Ming (Reef Ecology Laboratory, National University of Singapore). This work was supported by the Global Environment Facility/World Bank funded Coral Reef Targeted Research for Capacity Building and Management program, a Singapore Ministry of Education Academic Research Tier 1 FRC Grant (Grant Number: R-154-000-432-112) and the joint University of New South Wales and Nanyang Technological University project: “Development of the Advanced Environmental Biotechnology Centre (AEBC)” under the Research Centre Funding Scheme (RCFS), project No. COY-15-EWI-RCFS/N190-2. We are extremely grateful to David Suggett and one anonymous reviewer whose comments greatly improved the manuscript.
  • Genus and size-specific susceptibility of soft corals to 2020 bleaching event in the Philippines
    Baran, Christine; Luciano, Rhea Mae A.; Segumalian, Christine; Valino, Darryl Anthony; Baria-Rodriguez, Maria Vanessa (Taylor & Francis, 2023-05-08)
    Soft corals are zooxanthellate sessile animals supporting various organisms in coral reefs. However, their populations are threatened by the impacts of ocean warming. Under thermal stress conditions, soft corals may experience mild to severe bleaching which may lead to death. Understanding soft coral bleaching responses highlights the importance in predicting how populations and diversity may be affected by changing climate scenarios. In this study, we examined the bleaching responses of the three dominant soft coral genera (Lobophytum, n = 1318; Sarcophyton, n = 116; Sinularia, n = 639 colonies) in the Bolinao-Anda Reef Complex (BARC), Pangasinan, north-western Philippines during the 2020 thermal stress event in terms of genus and colony size susceptibility, and zooxanthellae density. Degree heating week (DHW) data from 1986–2020 were obtained using remotely sensed data to determine thermal anomalies in the study sites. The maximum DHW (6.3) in 2020 occurred between July–August while bleaching surveys were done during October of the same year. The percentage of bleached portions in each colony was used to determine bleaching category: no bleaching (0%), moderately bleached (1–50%) and heavily bleached (>50%). Quantification of bleaching prevalence and susceptibility of colony sizes were determined by colony count and mean diameter measurements taken from quadrat photographs in October 2020. Haphazard tissue collection (∼3 cm) in each colony of three soft coral genera per bleaching category was done to quantify zooxanthellae density. Results showed that Lobophytum colonies had the lowest bleaching prevalence (41%), followed by Sinularia (66%) and Sarcophyton (78%). All colony size classes of the three genera were susceptible to bleaching. However, smaller colonies of Lobophytum (<15 cm), Sarcophyton (<5 cm) and Sinularia (<5 cm) showed less susceptibility than large colonies. Zooxanthellae density was significantly reduced in moderately and heavily bleached colonies. The results of this study highlight that bleaching susceptibility is genus specific, with Sarcophyton and Sinularia being more susceptible to bleaching than Lobophytum. Smaller colonies seemed to be less susceptible to bleaching than large-sized soft corals suggesting a differential thermal stress response. Spatial variations in bleaching prevalence were also found among reef sites with varying environmental conditions and thermal stress histories. This work provided initial observations on how bleaching affects soft corals. Further studies on soft coral community recovery are recommended to fully understand how these organisms perform after thermal stress events.
    We acknowledge the Bolinao Marine Laboratory of the University of the Philippines for logistics and fieldwork assistance. Thanks to Kevin Yatco and Socorro Rodrigo for providing technical assistance in obtaining remotely sensed temperature data. Thank to Kevin Yatco and Socorro Rodrigo, and Kevin Labrador for providing technical assistance in obtaining remotely sensed temperature data and assistance in statistical analysis, respectively.
  • Thumbnail Image
    Implications of fisher perceptions on coral restoration in Tondol, northwestern Philippines
    Gomez, Rickdane; Mamauag, Samuel; Fabinyi, Michael; dela Cruz, Dexter; McLeod, Ian M.; Cabaitan, Patrick; Harrison, Peter L. (Elsevier, 2024)
    Increasing coral restoration efforts globally have been aimed at improving reef status and the ecosystem functions and services they provide, including enhancing reef fish communities and fisheries production on nearby reefs. However, empirical evidence showing the influence of coral restoration on fish stocks is limited. In Barangay Tondol, a small-scale fishing village in the northwestern Philippines, fisher knowledge and perception studies were completed through individual interviews to provide insights into the perceived impacts of local restoration efforts on coral reef conditions and fishery outputs. The influence of fishers' social demographics and fishery information to their held perceptions were also explored. Fishers’ responses showed a perceived decline in fish stocks over the last 5–10 years mainly attributed to overharvesting, and a slight improvement in coral reef condition due to a reduction in destructive fishing. Out of 53 fisher respondents, 72% were aware of coral restoration efforts in their area and held positive perceptions that theoretically, conducting coral restoration can improve their fish stocks and local reef conditions through the provision of habitat functions. Perceived actual effectiveness of the local efforts was also positive, but with a lower number of responses. Multiple hierarchical regression tests showed that, among social demographics, fishery information, and perceptions on fish stocks, perceived improvement in coral condition was associated with stronger support for coral restoration activities. These findings indicate that fishers perceive positive effects of coral restoration to local coral status and fisheries, and highlight the need for restoration practitioners to engage early on with key stakeholders to assess local fisheries status and local priorities to inform restoration strategies. © 2024 Elsevier Ltd
  • Thumbnail Image
    Institutional dimensions of coral reef restoration in the Philippines
    Matorres, Dane Erlo; Fabinyi, Michael; Horigue, Vera; Novilla, Carmela Therese; Baria-Rodriguez, Maria Vanessa (Elsevier, 2024)
    While the Philippines is mostly known for its experiences on marine protected areas, local governments and non-government organizations are increasingly using coral restoration with the aim of rehabilitating degraded reef areas. Since the establishment of artificial reefs in the 1970s, the application, techniques and corresponding policy directives for reef restoration have evolved over time, and restoration has recently generated significant interest and investments from donors and government agencies. As the Philippines does not have a policy framework to support effective and sustainable practices for the use of different coral restoration techniques, the increase and unregulated use of restoration may result in unintended consequences and pose potential challenges to coastal management. To address this gap, we conducted a review of existing coral restoration policies, programs and projects across the country, with a focus on social, economic and governance aspects. The study collated existing published literature and unpublished information on coral restoration in the country, and conducted key informant interviews. The results show that coral restoration continues to increase, and that existing guidelines on coral restoration are poorly implemented and not widely understood among practitioners. While coral restoration projects reported ecological benefits, socio-economic impacts are limited. The evidence supports the need to review existing policies and contextualize coral restoration to contribute to relevant policy decisions about the restoration and protection of reefs.